An Introduction to Weak Fuzzy Complex Numbers

Ahmed Hatip
Gaziantep University, Department of Mathematics, Gaziantep, Turkey
Email: Kollmar5@gmail.com

Abstract
The objective of this paper is to define for the first time the concept of weak fuzzy complex numbers as a novel generalization of real numbers. Also, it presents some of their elementary properties and algorithms for solving some related algebraic equations.

Keywords: weak fuzzy complex number; weak fuzzy algebraic equation; split-complex numbers.

Introduction
In the history of mathematics, many generalizations of real number were introduced with deep insight in geometry.

The main concept was the field of complex number \(\mathbb{C} = \{x + iy; i^2 = -1, x, y \in \mathbb{R}\} \). In addition, we find concepts such as:

Dual numbers \(\mathbb{D} = \{x + yj; j^2 = 0, x, y \in \mathbb{R}\} \), [1]

Split-complex numbers \(\mathbb{S} = \{x + yf; f^2 = 1, x, y \in \mathbb{R}\} \), [2]

Neutrosophic numbers \(\mathbb{N} = \{x + yI; I^2 = I, x, y \in \mathbb{R}\} \), [3,6,8-10]

In the literature, we find the concept of fuzzy set [4-5], which concerns the probability of truth and falsity.

If \(M \) is a non empty subset and \(f: m \rightarrow [0, 1] \), the fuzzy subset is defined as a duplet \((M, f) \).

This approach motivated us to use a fuzzy operator \((J) \) to extend the real field \((R) \) to a similar ring of the split-complex ring \(S \).

A fuzzy weak complex operator \((J) \) will be defined to be compatible with the soul of fuzzy logic.i.e. \(J^2 \in]0, 1[\), where \(J \notin R \).

From this point of view, we use the previous approach to build the ring of weak fuzzy complex numbers.

Main discussion.

Definition.

Let \(J \) be a weak fuzzy complex operator, we define the set of weak fuzzy complex numbers as follows:

\[F_J = \{a + bf; a, b \in R, f^2 \notin]0, 1[\} \]
For example $F_{\frac{1}{3}} = \{a + bj : a, b \in R, J^2 = \frac{1}{3}\}$

Remark.

F_j contains the real field R.

Definition.

Let F_j be a weak fuzzy complex numbers set, with $J^2 = t \in]0, 1[$, the operations on F_j are defined as follows:

Addition: $(a + bj) + (c + dj) = (a + c) + (b + d)J$.

Multiplication $(a + bj), (c + dj) = ac + adJ + bcf + bdJ^2 = (ac + bdt) + (ad + bc)J$

Remark.

$(F_j, +, \cdot)$ is a commutative ring.

Definition.

Let $x = a + bj \in F_j$, we define the conjugate of x as follows:

$\bar{x} = a - bj$

The norm of x is define as follows:

$||x|| = |x, \bar{x}| = \sqrt{|a^2 - b^2t|}$

Example.

Take the ring $(F_{\frac{1}{2}}, +, \cdot), x = 1 + 2J$, we have:

$\bar{x} = 1 - 2J, ||x|| = \sqrt{1^2 - 2^2(\frac{1}{2})} = 1$

Theorem.

Let $(F_j, +, \cdot)$ be the ring of weak fuzzy complex numbers with $J^2 = t \in]0, 1[$. Let $x = a + bj, y = c + dj$ be two arbitrary elements of F_j, then:

1. $\bar{(x + y)} = \bar{x} + \bar{y}, (x - y) = \bar{x} - \bar{y}$
2. $\bar{\bar{x}} = x, \bar{xy} = \bar{x}\bar{y}$
3. $||x, y|| = ||\bar{x}\bar{y}||$
4. x is invertible if and only if $t \neq \frac{a^2}{b^2}$, and $\frac{1}{x} = x^{-1} + J\frac{-b}{a^2 - tb^2}$

Proof:

1. $\bar{(x + y)} = [(a + c) - (b + d)J] = (a - b) + (c - d)J = \bar{x} + \bar{y}$
2. $\bar{\bar{x}} = (ac + bdt) - (ad + bc)J$
3. $||x, y|| = \sqrt{(ac + bdt)^2 - (ad + bc)^2t}$

On other hand, we have:

$||x, y|| = \sqrt{|a^2c^2 + b^2d^2t^2 + 2abcdt - a^2d^2t - b^2c^2t - 2abcdt|}$

$= \sqrt{|a^2c^2 - a^2d^2t - b^2c^2t + b^2d^2t^2|}$

$= \frac{1}{x} = \frac{1}{a + bj} = \frac{a - bj}{(a + bj)(a - bj)} = \frac{a - bw}{a^2 - tb^2}$

So that x is invertible if and only if $a^2 - tb^2 \neq 0$, hence $t \neq \frac{a^2}{b^2}$.

Example.

For $F_{\frac{1}{2}}$ with $J^2 = t = \frac{1}{2}$, and $x = 3 + 3J$, we have:

$\frac{1}{x} = \frac{1}{3 + 3J} = \frac{3}{3^2 - \frac{1}{2}} + J\frac{3}{3^2 - \frac{1}{2}} = \frac{3}{6} + J\frac{-3}{6} = \frac{1}{2} - \frac{1}{2}J$

Definition.

Let F_j be the weak fuzzy complex numbers with $J^2 = t$.

Let $x = a + bj, y = c + dj \in F_j$, then y is called a square root of x if $y^2 = x$.

Which implies that:
Example.

For \(J^2 = \frac{1}{2} \), we consider \(x = 2 + 2J, y = c + dJ \) be a square root of \(x \), hence:

\[
\begin{align*}
\left\{ \begin{array}{l}
c^2 + d^2t = a \quad (1) \\
2cd = b \quad (2) \\
\end{array} \right.
\]

\[
|c^2 - d^2t| = ||x|| = \sqrt{|a^2 - b^2t|} \quad (3)
\]

If \(c^2 - d^2t = \sqrt{2} \), we get \(2c^2 = 2 + \sqrt{2} \), thus \(c = \pm \sqrt{\frac{2+\sqrt{2}}{2}} \).

From equation (2), we get \(d = \frac{2}{\sqrt{2+\sqrt{2}}} \), thus:

\[
y = \sqrt{\frac{2+\sqrt{2}}{2}} + J\sqrt{\frac{2}{2+\sqrt{2}}}
\]

or \(\sqrt{\frac{2+\sqrt{2}}{2}} - J\sqrt{\frac{2}{2+\sqrt{2}}} \). On the other hand, if \(c^2 - \frac{1}{2}d^2 = -\sqrt{2} \), then:

\[
c = \pm \sqrt{\frac{2-\sqrt{2}}{2}}
\]

\[
d = \frac{2}{\sqrt{2-\sqrt{2}}}
\]

which implies \(y = \sqrt{\frac{2-\sqrt{2}}{2}} + J\sqrt{\frac{2}{2-\sqrt{2}}} \) or \(y = -\sqrt{\frac{2-\sqrt{2}}{2}} - J\sqrt{\frac{2}{2-\sqrt{2}}} \).

Definition.

Let \(A = a_1 + a_2J, X = x_1 + x_2J, B = b_1 + b_2J \in F \), the linear weak fuzzy equation is defined as follows:

\[
A \cdot X + B = 0,
\]

with \(X \) as the variable.

Theorem.

Let \(AX + B = 0 \) be a linear weak fuzzy equation, then:

1. If \(a_1^2 - a_2^2t \neq 0 \), then it is solvable uniquely.

2. If \(a_1^2 - a_2^2t = b_1 = b_2 = 0 \), then it has infinite solutions.

3. If \(a_1^2 - a_2^2t = 0 \) or \(b_1 = 0 \) or \(b_2 = 0 \), then it has no solutions.

Proof.

The equation \(AX + B = 0 \) is equivalent to:

\[
(a_1 + aJ)(x_1 + xJ) + (b_1 + bJ) = 0,
\]

hence:

\[
\begin{align*}
(a_1x_1 + a_2x_2t + b_1 = 0) \\
(a_1x_2 + a_2x_1 + b_2 = 0)
\end{align*}
\]

Which is equivalent to:

\[
\begin{align*}
(a_1x_1 + a_2tx_2 = -b_1 \quad (1)) \\
(a_1x_2 + a_2x_1 = -b_2 \quad (2))
\end{align*}
\]

by using Cramer’s method, we get:

\[
\begin{align*}
\frac{a_1 - a_2t}{a_2} = \frac{a_1^2 - a_2^2t}{a_1}
\end{align*}
\]

According to cramer’s method, we get the proof of 1,2 and 3.

Example.
Let $J^2 = \frac{1}{2}, A = 1 + J, B = 2 + 0J = 2$, the linear equation $AX + B = 0 \iff \begin{cases} x_1 + \frac{1}{2}x_2 = 2 \ldots (1) \\ x_2 + x_1 = 0 \ldots (2) \end{cases}$

This implies that, $x_1 = -4, x_2 = 4$, thus $X = -4 + 4J$.

The weak fuzzy quadratic equations.

Definition.

Let $AX^2 + BX + C = 0$, with $A = a_1 + a_2J, B = b_1 + b_2J, C = c_1 + c_2J, X = x_1 + x_2J \in F_J$, it is called a weak fuzzy quadratic equations.

Remark.

By easy computing of $AX^2 + BX + C = 0$, we get:

$$\begin{cases} a_1x_1^2 + a_2x_2^2t + 2a_1x_1x_2t + b_1x_1 + b_2x_2t + c_1 = 0 \\ a_2x_1^2 + a_2x_2^2t + 2a_1x_1x_2 + b_1x_2 + b_2x_1 + c_2 = 0 \end{cases}$$

Example.

Consider the following quadratic equation:

$$(1 - J)X^2 + JX + 2 + 4J = 0$$

With $t = J^2 = \frac{1}{3}$.

It is equivalent to:

$$\begin{cases} x_1^2 + \frac{1}{3}x_2^2 - \frac{2}{3}x_1x_2 + \frac{1}{3}x_2 + 2 = 0 \\ -x_1^2 - \frac{1}{3}x_2^2 + 2x_1x_2 - x_1 + 4 = 0 \end{cases}$$

The solution may be hard in this way.

We will try another method for searching the solutions.

Theorem.

Let $AX^2 + BX + C = 0$ be a quadratic weak fuzzy complex equation, where $A = a_1 + a_2J, B = b_1 + b_2J, C = c_1 + c_2J, X = x_1 + x_2J \in F_J$, then it is equivalent to:

$$\begin{cases} (a_1 + \sqrt{i}a_2)(x_1^2 + \sqrt{i}x_2^2) + (b_1 + \sqrt{i}b_2)(x_1 + \sqrt{i}x_2) + c_1 + \sqrt{i}c_2 = 0 \ldots (1) \\ (a_1 - \sqrt{i}a_2)(x_1 - \sqrt{i}x_2)^2 + (b_1 - \sqrt{i}b_2)(x_1 - \sqrt{i}x_2) + c_1 - \sqrt{i}c_2 = 0 \ldots (2) \end{cases}$$

Proof.

By computing equation (1), we get:

$$(a_1 + \sqrt{i}a_2)(x_1^2 + tx_2^2 + 2x_1x_2\sqrt{i}) + b_1x_1 + b_1x_2\sqrt{i} + b_2x_1\sqrt{i} + b_2x_2t + c_1 + c_2\sqrt{i} = 0$$

Hence:

$$a_1x_1^2 + a_1tx_2^2 + 2a_1x_1x_2\sqrt{i} + a_2\sqrt{i}x_1^2 + a_2\sqrt{i}x_2^2 + 2a_2x_1x_2t + b_1x_1 + b_1x_2\sqrt{i} + b_2x_1\sqrt{i} + b_2x_2t + c_1 + c_2\sqrt{i} = 0 \ldots (I)$$

By computing equation (2), we get:
\[(a_1 - \sqrt{a_2})(x_1^2 + tx_2^2 - 2x_1x_2\sqrt{t}) + b_1x_1 - b_1x_2\sqrt{t} - b_2x_1\sqrt{t} + b_2x_2t + c_1 - c_2\sqrt{t} = 0\]

Hence:
\[a_1x_1^2 + a_1tx_2^2 - 2a_1x_1x_2\sqrt{t} - a_2\sqrt{t}x_1^2 - a_2t\sqrt{tx}^2 + 2a_2x_1x_2t + b_1x_1 - b_1x_2\sqrt{t} - b_2x_1\sqrt{t} + b_2x_2t + c_1 - c_2\sqrt{t} = 0 \ldots (II)\]

We add \((I)\) to \((II)\):
\[2a_1x_1^2 + 2a_1tx_2^2 + 4a_2x_1x_2t + 2b_1x_1 + 2b_2x_2t + 2c_1 = 0, \text{ thus:} \]
\[a_1x_1^2 + a_1tx_2^2 + 2a_2x_1x_2t + b_1x_1 + b_2x_2t + c_1 = 0 \ldots (*)\]

We subtract \((II)\) from \((I)\):
\[4a_1x_1x_2\sqrt{t} + 2a_2\sqrt{tx}x_1^2 + 2a_2\sqrt{tx}x_2^2 + 2b_1x_1 + 2b_2x_1\sqrt{t} + 2c_2\sqrt{t} = 0, \text{ thus:} \]
\[+a_2x_1^2 + a_2tx_2^2 + 2a_1x_1x_2 + b_1x_2 + b_2x_1 + c_2 = 0 \ldots (**)\]

Equations (*) and (**) are equivalent to \(AX^2 + BX + C = 0\) according to remark.

Example.

Consider the equation \((3 + 2f)X^2 + jX - 15 - \frac{45}{2}j = 0; a_1 = 3, a_2 = 2, b_1 = 0, b_2 = 1, c_1 = -15, c_2 = -\frac{45}{2}, f^2 = \frac{1}{4} = t.\)

It is equivalent to:
\[
\begin{align*}
(3 + 1) \left(x_1 + \frac{1}{2} x_2 \right)^2 + \left(0 + \frac{1}{2} \right) \left(x_1 + \frac{1}{2} x_2 \right) - 15 - \frac{45}{4} &= 0 \\
(3 - 1) \left(x_1 - \frac{1}{2} x_2 \right)^2 + \left(0 + \frac{1}{2} \right) \left(x_1 - \frac{1}{2} x_2 \right) - 15 + \frac{45}{4} &= 0
\end{align*}
\]

Which are equivalent to:
\[
\begin{align*}
4 \left(x_1 + \frac{1}{2} x_2 \right)^2 + \frac{1}{2} \left(x_1 + \frac{1}{2} x_2 \right) - \frac{105}{4} &= 0 \ldots (1) \\
2 \left(x_1 - \frac{1}{2} x_2 \right)^2 - \frac{1}{2} \left(x_1 - \frac{1}{2} x_2 \right) - \frac{15}{4} &= 0 \ldots (2)
\end{align*}
\]

Firstly, we solve equation (1).
\[
\Delta = \frac{1}{4} - 4(4) \left(-\frac{105}{4} \right) = \frac{1}{4} + 420 = \frac{1681}{4} > 0, \sqrt{\Delta} = \frac{41}{2}
\]
So that: \(x_1 + \frac{1}{2} x_2 = -\frac{1+41}{4} = -\frac{42}{8} = -\frac{21}{4} \text{ or } x_1 + \frac{1}{2} x_2 = -\frac{1-41}{4} = -\frac{22}{4} = -\frac{11}{2}.\)

We solve equation (2).
\[
\Delta = \frac{1}{4} - 4(2) \left(-\frac{15}{4} \right) = \frac{121}{4} > 0, \sqrt{\Delta} = \frac{11}{2}
\]
So that: $x_1 - \frac{1}{2}x_2 = \frac{11}{2} = \frac{3}{2}$ or $x_1 - \frac{1}{2}x_2 = \frac{11}{2} = -\frac{5}{4}$.

if \[
\begin{cases}
 x_1 + \frac{1}{2}x_2 = \frac{5}{2}, \\
 x_1 - \frac{1}{2}x_2 = \frac{1}{2}
\end{cases}
\]
then $x_1 = 2, x_2 = 1$.

if \[
\begin{cases}
 x_1 + \frac{1}{2}x_2 = \frac{5}{2}, \\
 x_1 - \frac{1}{2}x_2 = \frac{1}{2}
\end{cases}
\]
then $x_1 = \frac{5}{8}, x_2 = \frac{5}{4}$.

if \[
\begin{cases}
 x_1 + \frac{1}{2}x_2 = -\frac{11}{4}, \\
 x_1 - \frac{1}{2}x_2 = \frac{3}{2}
\end{cases}
\]
then $x_1 = -\frac{5}{8}, x_2 = -\frac{17}{4}$.

if \[
\begin{cases}
 x_1 + \frac{1}{2}x_2 = -\frac{11}{4}, \\
 x_1 - \frac{1}{2}x_2 = -\frac{5}{4}
\end{cases}
\]
then $x_1 = -2, x_2 = \frac{3}{2}$.

This means that the weak fuzzy complex solutions are:

$$\left\{ 2 + J, \frac{5}{8} + \frac{5}{4}J, -\frac{5}{8} - \frac{17}{4}J, -2 + \frac{3}{2}J \right\}.$$