Fusion: Practice and Applications FPA 2692-4048 2770-0070 10.54216/FPA https://www.americaspg.com/journals/show/2572 2018 2018 Optimizing Task Scheduling and Resource Allocation in Computing Environments using Metaheuristic Methods Department of Information and Communication, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq Heba Heba Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiments reveal unique patterns in algorithmic behaviors by workload. In the 15-task and 5-node scenario, the GA and PSO algorithms outclass all others, completing 100 percent of tasks before deadlines, Task 5 was a bane to the ACO algorithm. The study proposes a more extensive system that promotes an adaptive algorithmic approach based on workload characteristics. Numerically, the GA and PSO algorithms triumphed completing 100 percent of tasks before their deadlines in the face of 10 tasks and 5 nodes, while the ACO algorithm stumbled on certain tasks. As it is stated in the study, The above-mentioned system offers an integrated approach to ill-structured problem of task scheduling and resource allocation. It offers an intelligent and aggressive scheduling scheme that runs asynchronously when a higher number of tasks is submitted for the completion in addition to those dynamically aborts whenever system load and utilization cascade excessively. The proposed design seems like full-fledged solution over project scheduling or resource allocation issues. It highlights a detailed method of the choice of algorithms based on semantic features, aiming at flexibility. Effects of producing quantifiable statistical results from the experiments on performance empirically demonstrate each algorithm performed under various settings. 2024 2024 157 179 10.54216/FPA.150113 https://www.americaspg.com/articleinfo/3/show/2572