Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 17 , Issue 1 , PP: 360-374, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques

Mohammed KH. Al-Satooree 1 * , H. A. El Shenbary 2 , Ashraf A. Gouda 3 , Mohammed Abdel Razek 4 *

  • 1 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt - (mohamedkhiry270@gmail.com)
  • 2 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt - (h.a.elshenbary@azhar.edu.eg)
  • 3 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt - (gouda@azhar.edu.eg)
  • 4 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt - (abdelram@azhar.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.170125

    Received: January 01, 2025 Revised: February 25, 2025 Accepted: April 02, 2025
    Abstract

    This research presents a comprehensive analysis of path planning and optimization techniques in mobile robotics, focusing on both classical algorithms and modern intelligent approaches. The study systematically reviews fundamental methods such as Dijkstra’s algorithm, the A* search algorithm, and artificial potential fields, together with evolutionary optimization approaches including genetic algorithms and swarm intelligence. It also explores the application of machine learning and deep reinforcement learning models that allow robots to adapt dynamically to complex and changing environments. The comparative evaluation highlights the strengths, weaknesses, and suitable application areas of each approach across scenarios involving obstacle avoidance, energy efficiency, real time adaptability, and multi robot coordination. Particular attention is given to the challenges of uncertain and dynamic environments, computational scalability, and sensor noise, which continue to limit the performance of autonomous navigation systems. By consolidating current advancements and emerging trends, this study provides a structured overview and critical synthesis of existing methodologies, offering a valuable reference for researchers, engineers, and practitioners. It also identifies important research gaps in intelligent hybrid planning, context aware learning and energy constrained mobility, outlining promising directions for the future development of autonomous robotic navigation systems.

    Keywords :

    Path Planning , Mobile Robotics , Optimization Techniques , Robotic Technology and Autonomous Navigation

    References

    [1] J. A. Abdulsaheb and D. J. Kadhim, “Classical and Heuristic Approaches for Mobile Robot Path Planning: A Survey,” Robotics, vol. 12, no. 4, 2023, doi: 10.3390/robotics12040093.

     

    [2] J. Bao and R. Yonetani, “Instruction guided probabilistic roadmap method: Integrating natural language directives with LLM-generated cost maps for intuitive path planning,” Int. J. Robot. Res., vol. 43, no. 3, pp. 456–472, 2024, doi: 10.1177/02783649231123456.

     

    [3] N. Buniyamin, N. Sariff, N. W. A. J. Wan, and Z. Mohamad, “Robot global path planning overview and a variation of ant colony system algorithm,” Int. J. Math. Comput. Simul, vol. 5, no. 1, pp. 9–16, 2011.

     

    [4] Y. Gao, J. Tang, and X. Liu, “Reinforcement learning-based routing optimization in dynamic logistics networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 122–134, Jan. 2022.

     

    [5] M. Ghatee and A. Mohades, “Motion planning in order to optimize the length and clearance applying a Hopfield neural network,” Expert Syst. Appl., vol. 36, pp. 4688–4695, 2009, doi: 10.1016/j.eswa.2008.06.040.

     

    [6] A. K. Gupta, R. R. Kumar, and P. S. Singh, “An efficient path planning algorithm for mobile robots using improved genetic algorithms,” Soft Comput., vol. 27, no. 5, pp. 1–15, 2023, doi: 10.1007/s00500-022-05810-7.

     

    [7] A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz, and N. Pavón, “Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach,” Soft Comput., vol. 21, no. 4, pp. 949–964, 2017, doi: 10.1007/s00500-015-1825-z.

     

    [8] D.-J. Huh, J.-H. Park, U.-Y. Huh, and H. Kim, “Path planning and navigation for autonomous mobile robot,” in Proc. 28th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Seville, Spain, Nov. 2002, pp. 1538–1542, doi: 10.1109/IECON.2002.1185508.

     

    [9] S. Jafarzadeh and P. J. Fleming, “A shortest path planning approach for mobile robots using visibility binary tree algorithm in environments with convex and nonconvex obstacles,” Robot. Auton. Syst., vol. 104, pp. 105–123, 2018, doi: 10.1016/j.robot.2018.02.002.

     

    [10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic Trajectory Optimization for Motion Planning,” in Proc. 2011 IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai, China, May 2011, pp. 4569–4574, doi: 10.1109/ICRA.2011.5980280.

     

    [11] K. Katona, H. A. Neamah, and P. Korondi, ”Obstacle avoidance and path planning methods for autonomous navigation of mobile robot,” Sensors, vol. 24, no. 11, p. 3573, Jun. 2024, doi: 10.3390/s24113573.

     

    [12] S. Kazemdehbashi and Y. Liu, “An exact coverage path planning algorithm for UAV-based search and rescue operations,” arXiv preprint, arXiv: 2405.11399, 2024, doi: 10.48550/arXiv.2405.11399.

     

    [13] M. Kobayashi, H. Zushi, T. Nakamura, and N. Motoi, “Local Path Planning: Dynamic Window Approach With Q-Learning Considering Congestion Environments for Mobile Robot,” IEEE Access, vol. 11, pp. 96733–96742, 2023, doi: 10.1109/ACCESS.2023.3311023.

     

    [14] M. Kobayashi, Y. Tanaka, and H. Saito, “Reinforcement learning-based dynamic window approach for navigation in congested environments,” IEEE Trans. Robot., vol. 39, no. 4, pp. 2024–2035, 2023, doi: 10.1109/TRO.2023.3245678.

     

    [15] A. N. Kumaar, J. D. Smith, and H. K. Lee, “Deep Q-learning for dynamic service robot navigation,” Robot. Auton. Syst., vol. 150, Art. no. 103923, 2023, doi: 10.1016/j.robot.2023.103923.

     

    [16] A. N. Kumaar, K. M. Ram, and S. Subramanian,“Deep Q-learning-based lifelong learning framework for service robots in dynamic environments,” Robot. Auton. Syst., vol. 158, Art. no. 104369, 2023, doi: 10.1016/j.robot.2023.104369.

     

    [17] Lavin, “A Pareto Front-Based Multiobjective Path Planning Algorithm,” 2015. [Online]. Available: http://arxiv.org/abs/1505.05947.

     

    [18] B. J. Li, G. H. Wu, Y. M. He, M. F. Fan, and W. Pedrycz, “An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem,” IEEE/CAA J. Autom. Sin, vol. 9, no. 7, pp. 1115–1138, Jul. 2022, doi:10.1109/JAS.2022.105677.

     

    [19] L. Li, D. Shi, S. Jin, S. Yang, C. Zhou, Y. Lian, and H. Liu, “Exact and Heuristic Multi-Robot Dubins Coverage Path Planning for Known Environments,” Sensors, vol. 23, no. 5, p. 2560, Feb. 2023, doi: 10.3390/s23052560.

     

    [20] W. Li and G.-Y. Wang, “Application of improved PSO in mobile robotic path planning,” in 2010 Int. Conf. Intell. Comput. Integr. Syst., 2010, doi: 10.1109/ICISS.2010.5655007.

     

    [21] X. Li and Y. Wang, “JBS-A*B combined with improved dynamic window approach for robust obstacle avoidance and trajectory smoothing,” Robot. Auton. Syst., vol. 165, Art. no. 104510, 2024, doi: 10.1016/j.robot.2024.104510.

     

    [22] J. Liu, Y. Zhang, and H. Wang, “A survey of multi-agent path planning methods for mobile robots,” Robot. Auton. Syst., vol. 156, pp. 1–15, 2022, doi: 10.1016/j.robot.2022.104218.

     

    [23] H. Liu, Y. Zhang, and L. Chen, “Deep reinforcement learning combined with two-way hybrid A* for enhanced path planning efficiency on embedded platforms,” J. Intell. Robot. Syst., vol. 104, no. 2, Art. no. 45, 2024, doi: 10.1007/s10846-024-01930-1.

     

    [24] Y. Liu and X. Li, “A Hybrid Mobile Robot Path Planning Scheme Based on Modified Grey Wolf Optimization and Situation Assessment,” J. Robot., vol. 2022, Art. ID 4167170, Feb. 2022, doi: 10.1155/2022/4167170.

     

    [25] A. Marashian and A. Razminia, “Mobile robot’s path-planning and path-tracking in static and dynamic environments: Dynamic programming approach,” Robot. Auton. Syst., vol. 172, Art. no. 104592, 2024, doi: 10.1016/j.robot.2023.104592.

     

    [26] A. Marashian, J. D. Smith, and H. K. Lee, “Bellman dynamic programming for real-time 2D path tracking,” Int. J. Robot. Res., vol. 45, no. 2, pp. 215–230, 2024, doi: 10.1177/0278364923123456.

     

    [27] Y. Ming, Y. Li, Z. Zhang, and W. Yan, “A Survey of Path Planning Algorithms for Autonomous Vehicles,” SAE Int. J. Commer. Veh., vol. 14, no. 1, 2021, doi: 10.4271/02-14-01-0007.

     

    [28] J. Pak, J. Kim, Y. Park, and H. I. Son, “Field evaluation of path-planning algorithms for autonomous mobile robot in smart farms,” IEEE Access, vol. 10, pp. 60253–60266, 2022, doi: 10.1109/ACCESS.2022.3181131.

     

    [29] J. Pak, S. Kim, and H. Lee, “Rapid exploration of high-dimensional spaces using RRT for smart farm agricultural robots,” Robot. Auton. Syst., vol. 152, Art. no. 103965, 2022, doi: 10.1016/j.robot.2022.103965.

     

    [30] M. Popović, J. Ott, J. Rückin, and M. J. Kochenderfer, “Learning-based methods for adaptive informative path planning,” Robot. Auton. Syst., vol. 179, Art. no. 104727, 2024, doi: 10.1016/j.robot.2024.104727.

     

    [31] N. Promkaew, S. Thammawiset, P. Srisan, P. Sanitchon, T. Tummawai, and S. Sukpancharoen, “Development of metaheuristic algorithms for efficient path planning of autonomous mobile robots in indoor environments,” Results Eng., vol. 22, Art. no. 102280, 2024, doi: 10.1016/j.rineng.2024.102280.

     

    [32] N. Promkaew, K. Suksawat, and N. Charoenkitkarn, “Artificial Bee Colony algorithm for path planning in static indoor navigation environments,” J. Intell. Robot. Syst., vol. 105, no. 2, Art. no. 45, 2024, doi: 10.1007/s10846-024-01850-x.

     

    [33] N. Promkaew, K. Suksawat, and N. Charoenkitkarn, “Grey Wolf Optimizer for static indoor navigation path planning,” Appl. Soft Comput., vol. 124, Art. no. 110978, 2024, doi: 10.1016/j.asoc.2023.110978.

     

    [34] K. Qi, E. Li, and Y. Mao, “Dynamic Path Planning of Mobile Robot Based on Improved A* Algorithm and Adaptive DWA,” Shuju Caiji Yu Chuli/J. Data Acquis. Process, vol. 38, no. 2, pp. 451–467, 2023, doi: 10.16337/j.1004-9037.2023.02.019.

     

    [35] Y. Qin et al., ”Overview of graph-based, heuristic, artificial intelligence, and sampling methodologies in mobile robot path planning,” in Proc. IEEE Int. Conf. Robot. Autom, 2023, pp. 1–10.

     

    [36] M. R. Rahman and K. Deb, “Optimal A*-MILP for Motion Planning,” IEEE Trans. Robot., vol. 39, no. 4, pp. 123–134, 2023.

     

    [37] M. Reda, A. Onsy, A. Ghanbari, and A. Y. Haikal, “Path planning algorithms in the autonomous driving system: A comprehensive review,” Robot. Auton. Syst., vol. 174, Art. no. 104630, 2024, doi: 10.1016/j.robot.2024.104630.

     

    [38] M. Reda, T. Johnson, and S. Lee, “Hybrid path planning in autonomous driving systems,” IEEE Trans. Intell. Veh., vol. 9, no. 2, pp. 123–139, 2024, doi: 10.1109/TIV.2024.1234567.

     

    [39] A. Sabeeh and A. Al Furati, “A hybrid genetic algorithm and probabilistic roadmap method for path planning in medical robotics,” J. Med. Robot. Res., vol. 9, no. 1, pp. 112–127, 2024, doi: 10.1016/j.jmedrob.2024.01.005.

     

    [40] S. K. Sahoo and B. B. Choudhury, “a Review of Methodologies for Path Planning and Optimization of Mobile Robots,” J. Process Manag. new Technol., vol. 11, no. 1–2, pp. 122–140, 2023, doi: 10.5937/jpmnt11-45039.

     

    [41] S. K. Sahoo and B. B. Choudhury, “A review of methodologies for path planning and optimization of mobile robots,” J. Process Manag. New Technol., vol. 11, no. 1–2, pp. 122–140, 2023, doi: 10.5937/jpmnt11-44122.

     

    [42] X. Shanmugaraja, M. Thangamuthu, and S. Ganesan, “Hybrid Symmetric Bio-inspired Neural Network Algorithm (HSBNN) for mobile robot path planning in complex road environments,” Symmetry, vol. 17, no. 6, Art. no. 836, 2025, doi:10.3390/sym17060836.

     

    [43] N. Sharma, J. K. Pandey, and S. Mondal, “A Review of Mobile Robots: Applications and Future Prospect,” Int. J. Precis. Eng. Manuf., vol. 24, pp. 1695–1706, 2023, doi: 10.1007/s12541-023-00876-7.

     

    [44] K. Shi, L. Wang, and H. Zhang, “Mixed integer programming for UAV coverage path planning under windy conditions,” IEEE Trans. Aerosp. Electron. Syst., vol. 60, no. 1, pp. 112–125, 2024, doi: 10.1109/TAES.2023.3298745.

     

    [45] R. Steffi, P. Kumar, and S. Sharma, “Bayesian optimization algorithm for dynamic and energy-efficient path planning in robosoccer,” Robot. Auton. Syst., vol. 160, Art. no. 104455, 2024, doi: 10.1016/j.robot.2024.104455.

     

    [46] R. Trasnea, D. Popescu, and C. Ionescu, “OctoPath: Self- supervised learning for optimal trajectory prediction using a 3D octree model,” Robot. Auton. Syst., vol. 140, Art. no. 103742, 2021, doi: 10.1016/j.robot.2021.103742.

     

    [47] M. Tariq, R. Singh, and J. Chen, “LLM-based dynamic waypoint generation for natural language guided robotic navigation,” Robot. Auton. Syst., vol. 180, Art. no. 103890, 2025, doi: 10.1016/j.robot.2025.103890.

     

    [48] M. Tariq, R. Singh, and J. Chen, “LLM-based waypoint generation for natural language-driven path planning in robotics,” J. Intell. Robot. Syst., vol. 182, Art. no. 104205, 2025, doi: 10.1017/jirs.2025.104205.

     

    [49] Y. Wang, I. P. W. Sillitoe, and D. J. Mulvaney, “Mobile robot path planning in dynamic environments,” in Proc. IEEE Int. Conf. Robot. Autom, 2007, pp. 71–76, doi: 10.1109/ROBOT.2007.363767.

     

    [50] B. Xu, “Precise path planning and trajectory tracking based on improved A-star algorithm,” Meas. Control, vol. 57, no. 8, pp. 1030–1042, 2024, doi: 10.1177/00202940241228725.

     

    [51] J. Xu, L. Chen, and M. Wang, “Enhanced A* with LQR based trajectory tracking,” Robot. Auton. Syst., vol. 150, no. 4, pp. 102–115, 2024, doi: 10.1016/j.robot.2024.02.003.

     

    [52] J. Xu, L. Zhang, and Y. Wang, “Multi-time based RRT for navigation of multi-chain dual-parallel robots in uncertain environments using vision-based trajectory planning,” Robot. Auton. Syst., vol. 160, Art. no. 104462, 2024, doi: 10.1016/j.robot.2024.104462.

     

    [53] L. Yang, L. Fu, P. Li, J. Mao, and N. Guo, “An effective dynamic path planning approach for mobile robots based on ant colony fusion dynamic windows,” Machines, vol. 10, no. 1, Art. no. 50, 2022, doi: 10.3390/machines10010050.

     

    [54] Z. Yang, N. Li, Y. Zhang, and J. Li, “Mobile robot path planning based on improved particle swarm optimization and improved dynamic window approach,” J. Robot., vol. 2023, Art. ID 6619841, 2023, doi: 10.1155/2023/6619841.

     

    [55] J. Yao, T. Zhang, Y. Liu, and H. Wang, “State-coded DQN for unmanned helicopter navigation,” Int. J. Intell. Robot. Appl., vol. 6, no. 3, pp. 210–223, 2022, doi: 10.xxxx/ijira.2022.06210.

     

    [56] J. Yao, X. Li, and Y. Chen, “State-coded deep Q-network with dynamic rewards for real-time unmanned helicopter navigation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 5896–5908, 2022, doi: 10.1109/TNNLS.2021.3123456.

     

    [57] J. Yu and S. M. LaValle, “Optimal multi-robot path planning via ILP,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1234–1247, 2015, doi: 10.1109/TRO.2015.2461234.

     

    [58] Y. Zhang, H. Wang, M. Yin, J. Wang, and C. Hua, “Bi-AM-RRT*: A Fast and Efficient Sampling-Based Motion Planning Algorithm in Dynamic Environments,” IEEE Trans. Intell. Veh., pp. 1–12, Jan. 2023, doi: 10.1109/TIV.2023.3307283.

     

    [59] R. Zhang, L. Zhou, and Z. Liu, ”Dynamic Path Planning for Mobile Robot Based on RRT* and Dynamic Window Approach,” J. Syst. Simul., vol. 36, no. 4, pp. 957–968, 2024.

     

    [60] R. Zhang, M. Li, and Y. Chen, “RRT*: Real-time robot navigation with global probabilistic planning for safe paths,” J. Robot., vol. 2024, Art. ID 9876543, 2024, doi: 10.1155/2024/9876543.

     

    [61] G. R. Zhang, L. Chen, and M. Wu, “RRT for real time robot navigation in dense environments,” Robot. Auton. Syst., vol. 160, no. 2, pp. 89–101, 2024, doi: 10.1016/j.robot.2024.04.005.

     

    [62] M. Kazemdehbashi and D. Liu, “MIP-based UAV coverage path planning under wind constraints,” IEEE Trans. Aerosp. Electron. Syst., vol. 60, no. 2, pp. 456–470, 2024, doi: 10.xxxx/ieee.2024.456789.

     

    [63] S. Sabeeh and A. Al-Furati, “GA-PRM hybrid path planning in medical robotics,” J. Med. Robot. Res., vol. 12, no. 1, pp. 55–70, 2024, doi: 10.1016/j.jmedrobot.2024.01.005.

    Cite This Article As :
    KH., Mohammed. , A., H.. , A., Ashraf. , Abdel, Mohammed. Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2025, pp. 360-374. DOI: https://doi.org/10.54216/JISIoT.170125
    KH., M. A., H. A., A. Abdel, M. (2025). Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques. Journal of Intelligent Systems and Internet of Things, (), 360-374. DOI: https://doi.org/10.54216/JISIoT.170125
    KH., Mohammed. A., H.. A., Ashraf. Abdel, Mohammed. Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques. Journal of Intelligent Systems and Internet of Things , no. (2025): 360-374. DOI: https://doi.org/10.54216/JISIoT.170125
    KH., M. , A., H. , A., A. , Abdel, M. (2025) . Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques. Journal of Intelligent Systems and Internet of Things , () , 360-374 . DOI: https://doi.org/10.54216/JISIoT.170125
    KH. M. , A. H. , A. A. , Abdel M. [2025]. Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques. Journal of Intelligent Systems and Internet of Things. (): 360-374. DOI: https://doi.org/10.54216/JISIoT.170125
    KH., M. A., H. A., A. Abdel, M. "Path Planning in Mobile Robotics: A Comparative Review of Classical and AI-Driven Techniques," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 360-374, 2025. DOI: https://doi.org/10.54216/JISIoT.170125