2573 946
Full Length Article
Journal of Cybersecurity and Information Management
Volume 6 , Issue 2, PP: 101-107 , 2021 | Cite this article as | XML | Html |PDF

Title

An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm

  Mohammad Alshehri 1 *

1  Visiting Professor, University of Technology Sydney, Sydney, Australia
    (Mohammad.Alshehri@uts.edu.au)


Doi   :   https://doi.org/10.54216/JCIM.060203

Received: December 28, 2020 Accepted: March 11, 2021

Abstract :

Presently, a precise localization and tracking process becomes significant to enable smartphone-assisted navigation to maximize accuracy in the real-time environment. Fingerprint-based localization is the commonly available model for accomplishing effective outcomes. With this motivation, this study focuses on designing efficient smartphone-assisted indoor localization and tracking models using the glowworm swarm optimization (ILT-GSO) algorithm. The ILT-GSO algorithm involves creating a GSO algorithm based on the light-emissive characteristics of glowworms to determine the location. In addition, the Kalman filter is applied to mitigate the estimation process and update the initial position of the glowworms. A wide range of experiments was carried out, and the results are investigated in terms of distinct evaluation metrics. The simulation outcome demonstrated considerable enhancement in the real-time environment and reduced the computational complexity. The ILT-GSO algorithm has resulted in an increased localization performance with minimal error over the recent techniques.

Keywords :

Indoor localization , Smartphones , Tracking model , GSO algorithm , Kalman filter , Estimation error

References :

[1]      Wang, X., Yu, Z. and Mao, S., 2018, May. DeepML: Deep LSTM for indoor localization with smartphone magnetic and light sensors. In 2018 IEEE international conference on communications (ICC) (pp. 1-6). IEEE.

[2]      Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M. and Asakawa, C., 2018, March. Smartphone-based indoor localization for blind navigation across building complexes. In 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom) (pp. 1-10). IEEE.

[3]      Seco, F. and Jiménez, A.R., 2018. Smartphone-based cooperative indoor localization with RFID technology. Sensors, 18(1), p.266.

[4]      Ashraf, I., Hur, S., Park, S. and Park, Y., 2020. DeepLocate: Smartphone based indoor localization with a deep neural network ensemble classifier. Sensors, 20(1), p.133.

[5]      Kang, J., Lee, J. and Eom, D.S., 2018. Smartphone-based traveled distance estimation using individual walking patterns for indoor localization. Sensors, 18(9), p.3149.

[6]      Wang, G., Wang, X., Nie, J. and Lin, L., 2019. Magnetic-based indoor localization using smartphone via a fusion algorithm. IEEE Sensors Journal, 19(15), pp.6477-6485.

[7]      Poulose, A., Kim, J. and Han, D.S., 2019. A sensor fusion framework for indoor localization using smartphone sensors and Wi-Fi RSSI measurements. Applied Sciences, 9(20), p.4379.

[8]      Ashraf, I., Hur, S. and Park, Y., 2019. Application of deep convolutional neural networks and smartphone sensors for indoor localization. Applied Sciences, 9(11), p.2337.

[9]      Gu, F., Khoshelham, K., Shang, J., Yu, F. and Wei, Z., 2017. Robust and accurate smartphone-based step counting for indoor localization. IEEE Sensors Journal, 17(11), pp.3453-3460.

[10]   Luo, J. and Fu, L., 2017. A smartphone indoor localization algorithm based on WLAN location fingerprinting with feature extraction and clustering. Sensors, 17(6), p.1339.

[11]   Zhang, W., Sengupta, R., Fodero, J. and Li, X., 2017, December. DeepPositioning: Intelligent fusion of pervasive magnetic field and WiFi fingerprinting for smartphone indoor localization via deep learning. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 7-13). IEEE.

[12]   Ashraf, I., Hur, S., Shafiq, M., Kumari, S. and Park, Y., 2019. GUIDE: Smartphone sensorsā€based pedestrian indoor localization with heterogeneous devices. International Journal of Communication Systems, 32(15), p.e4062.

[13]   Ciabattoni, L., Foresi, G., Monteriù, A., Pepa, L., Pagnotta, D.P., Spalazzi, L. and Verdini, F., 2019. Real time indoor localization integrating a model based pedestrian dead reckoning on smartphone and BLE beacons. Journal of Ambient Intelligence and Humanized Computing, 10(1), pp.1-12.

[14]   Chen, J., Zhang, Y. and Xue, W., 2018. Unsupervised indoor localization based on Smartphone Sensors, iBeacon and Wi-Fi. Sensors, 18(5), p.1378.

[15]   Li, P., Yang, X., Yin, Y., Gao, S. and Niu, Q., 2020. Smartphone-based indoor localization with integrated fingerprint signal. IEEE Access, 8, pp.33178-33187. 

[16]   del Horno, M.M., Orozco-Barbosa, L. and García-Varea, I., 2021. A smartphone-based multimodal indoor tracking system. Information Fusion, 76, pp.36-45. 

[17]   Vy, T.D., Nguyen, T.L. and Shin, Y., 2021, April. Pedestrian Indoor Localization and Tracking Using Hybrid Wi-Fi/PDR for iPhones. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-7). IEEE. 

[18]   Roy, P., Chowdhury, C., Kundu, M., Ghosh, D. and Bandyopadhyay, S., 2021. Novel weighted ensemble classifier for smartphone based indoor localization. Expert Systems with Applications, 164, p.113758. 

[19]   Roy, P. and Chowdhury, C., 2021. Designing an ensemble of classifiers for smartphone-based indoor localization irrespective of device configuration. Multimedia Tools and Applications, 80(13), pp.20501-20525.

[20]   Salimibeni, M., Hajiakhondi-Meybodi, Z., Malekzadeh, P., Atashi, M., Plataniotis, K.N. and Mohammadi, A., 2021, January. IoT-TD: IoT dataset for multiple model BLE-based indoor localization/tracking. In 2020 28th European Signal Processing Conference (EUSIPCO) (pp. 1697-1701). IEEE. 

[21]   Gobi, R., 2021. Smartphone based indoor localization and tracking model using bat algorithm and Kalman filter. Multimedia Tools and Applications, 80(10), pp.15377-15390.

 

[22]   Jin, Y., Hou, W., Li, G. and Chen, X., 2017. A glowworm swarm optimization-based maximum power point tracking for photovoltaic/thermal systems under non-uniform solar irradiation and temperature distribution. Energies, 10(4), p.541.


Cite this Article as :
Style #
MLA Mohammad Alshehri. "An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm." Journal of Cybersecurity and Information Management, Vol. 6, No. 2, 2021 ,PP. 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)
APA Mohammad Alshehri. (2021). An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm. Journal of Journal of Cybersecurity and Information Management, 6 ( 2 ), 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)
Chicago Mohammad Alshehri. "An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm." Journal of Journal of Cybersecurity and Information Management, 6 no. 2 (2021): 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)
Harvard Mohammad Alshehri. (2021). An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm. Journal of Journal of Cybersecurity and Information Management, 6 ( 2 ), 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)
Vancouver Mohammad Alshehri. An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm. Journal of Journal of Cybersecurity and Information Management, (2021); 6 ( 2 ): 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)
IEEE Mohammad Alshehri, An Efficient Smartphone Assisted Indoor Localization with Tracking Approach using Glowworm Swarm Optimization Algorithm, Journal of Journal of Cybersecurity and Information Management, Vol. 6 , No. 2 , (2021) : 101-107 (Doi   :  https://doi.org/10.54216/JCIM.060203)