International Journal of Wireless and Ad Hoc Communication

Journal DOI

https://doi.org/10.54216/IJWAC

Submit Your Paper

2692-4056ISSN (Online)
Full Length Article

International Journal of Wireless and Ad Hoc Communication

Volume 6 , Issue 1 , PP: 63-75, 2023 | Cite this article as | XML | Html | PDF

Photonic Crystal Circuitry and its Impact on Wireless Networks

Tamer S. Mostafa 1 * , Shaimaa A. Kroush 2 , El- Sayed M. El- Rabaie 3

  • 1 Telecommunication Department, Faculty of Engineering, Egyptian Russian University (ERU) Cairo, Egypt - (algwaal@yahoo.com)
  • 2 Telecommunication Department, Faculty of Engineering, Egyptian Russian University (ERU) Cairo, Egypt - (shimaa.krosh@gmail.com)
  • 3 Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, P.O. 32952 - (elsayedelrabaie@gmail.com)
  • Doi: https://doi.org/10.54216/IJWAC.060106

    Received: October 11, 2022 Accepted: December 12, 2022
    Abstract

    Wireless networks are considered a hot topic in dealing with data without need to routers or other infrastructures. Each node has a part of routing responsibility. This result to a huge of data in forwarding to other nodes and will need high speed to process.  Photonic crystal applications come to solve the necessity for such speed with small circuitry area. One of the main factors that affect their operation is the structure topology. Ring resonator, cavity based structures, self-collimation, and waveguide approaches are some of these topologies.  OR gate is proposed in this paper to be simulated and evaluated as one of the basic element block. This design is built on a square lattice- photonic crystal construction on a ring resonator basis. Rotation of 90, 180, and 270 degrees are applied in clockwise direction. Sensitivity analysis, and carefully rod locations are considered to obtain remarkable performance. Minimum size and highly data rate are two characteristics that discriminates this design. The minimum size of 51.48 μm2 is obtained. The bit rates of 1.35, 6.35, 3.2, and 2.53 Tb/s are calculated with the 0, 90, 180, and 270 degrees, respectively. Comparison table is well organized for the recently published photonic crystal OR-gate that based on ring resonator. Finite difference time domain and Plan wave expansion method are used to analyze the proposed structure at 1.55μm wavelength to verify OR- gate operation.    

    Keywords :

    Wireless networks , OR-gate , Photonic crystal applications , Ring resonator , Photonic crystal topology , Bit rate.

    References

    [1]  Yoo,  H.,  Heo,  K.,  Ansari,  M.H.R.,  Cho,  S.:  Recent  advances  in  electrical  doping  of  2d 

    semiconductor materials: Methods, analyses and applications, Nanomaterials,(2021) vol. 11, no. 

    4. 2021, doi: 10.3390/nano11040832.

    [2]  García  de Arquer, F.P., Talapin, D. V., Klimov, V.I., Arakawa, Y., Bayer, M., Sargent, E.H.: 

    Semiconductor  quantum  dots:  Technological  progress  and  future  challenges,Science  (New 

    York,N.Y.), (2021) vol. 373, no. 6555. 2021, doi: 10.1126/science. aaz8541.

    [3]  Mano, M.M., Ciletti, M.D.: Digital Design, Pearson College Div; 4th edition (January 1, 2006).

    [4]  Nadimi  Goki,  P.,  Tufano,  A.,  Cavaliere,  F.,  Potì,  L.:  SOA  Model  and  Design  Guidelines  in 

    Lossless  Photonic  Subsystem.  New  Adv.  Semicond.NewAdv.Semicond.,  (2022) 

    https://doi.org/10.5772/intechopen.103048., vol. 119, no. 25, 2021, doi: 10.1063/5.0063118.

    [5]  Kashiwazaki,  T.,  Yamashima,  T.,  Takanashi,  N.,  Inoue,  A.,  Umeki,  T.,  Furusawa,  A.: 

    Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized 

    broadband  high-level  squeezer.  Appl.  Phys.  Lett.  119,  (2021). 

    https://doi.org/10.1063/5.0063118.

    [6]  Li,  M.,  Lai,  X.,  Li,  C.,  Song,  Y.:  Recent  advantages  of  colloidal  photonic  crystals  and  their 

    applications  for  luminescence  enhancement.  Mater.  Today  Nano.  6,  (2019). 

    https://doi.org/10.1016/j.mtnano.2019.100039.

    [7]  Abbaszadeh,  A.,  Makouei,  S.,  Meshgini,  S.:  Highly  sensitive  triangular  photonic  crystal  fiber 

    sensor  design  applicable  for  gas  detection.  Adv.  Electromagn.  10,  (2021).

    https://doi.org/10.7716/aem.v9i1.1539.

    [8]  Bozorgzadeh,  F.,  Ahmadi,  D.,  Sahrai,  M.:  Innovative  fiber  Bragg  grating  filter  based  on  a 

    graphene  photonic  crystal  microcavity.  Appl.  Opt.  59,  (2020). 

    https://doi.org/10.1364/ao.59.000084.

    [9]  Mostafa,  T.S.,  Mohammed,  N.A.,  El-Rabaie,  E.S.M.:  Ultra-High  bit  rate  all-optical  AND/OR 

    logic  gates  based  on  photonic  crystal  with  multi-wavelength  simultaneous  operation.  J.  Mod. 

    Opt. 66, (2019). https://doi.org/10.1080/09500340.2019.1598587.

    [10]   Rao, D.G.S., Swarnakar, S., Kumar, S.: Design of photonic crystal based compact all-optical 2 × 

    1  multiplexer  for  optical  processing  devices.  Microelectronics  J.  112,  105046  (2021). 

    https://doi.org/10.1016/j.mejo.2021.105046.

    [11]   Naghizade,  S.,  Sattari-Esfahlan,  S.M.:  An  Optical  Five  Channel  Demultiplexer-Based  Simple 

    Photonic Crystal Ring Resonator for WDM Applications. J. Opt.  Commun. 41, 37–43 (2020). 

    https://doi.org/10.1515/joc-2017-0129.

    [12]   Mostafa,  T.S.,  El-Rabaie,  E.S.M.:  All-Optical  D-Flip  Flop  with  Multi-Wavelength  Operation 

    Based on Photonic Crystal. Proc. Int. Japan-Africa Conf. Electron. Commun. Comput. JAC-ECC 

    2019. 184–187 (2019). https://doi.org/10.1109/JAC-ECC48896.2019.9051118.

    [13]   Jiang, Z., Li,  P., Xu, G.: Terahertz Wave 4-2 Encoder Based on Photonic Crystal. Zhongguo 

    Jiguang/Chinese J. Lasers. 48, (2021). https://doi.org/10.3788/CJL202148.2014002.

    [14]   Maleki,  M.J.,  Soroosh,  M., Mir,  A.:  Ultra-fast  all-optical  2-to-4  decoder  based on  a  photonic 

    crystal structure. Appl. Opt. 59, 5422 (2020). https://doi.org/10.1364/ao.392933.

    [15]   Parandin, F., Reza Malmir, M.: Reconfigurable all optical half adder and optical XOR and AND 

    logic  gates  based  on  2D  photonic  crystals.  Opt.  Quantum  Electron.  52,  (2020). 

    https://doi.org/10.1007/s11082-019-2167-3.

    [16]   Mostafa,  T.,  krosh,  shimaa,  El-Rabie,  E.-S.:  Appropriate  Photonic  Crystal  Topology  for 

    Appropriate  Applications.  Menoufia  J.  Electron.  Eng.  Res.  31,  75–86  (2022). 

    https://doi.org/10.21608/mjeer.2022.128016.1049

    [17]   Maleki, M.J., Soroosh, M.: A novel proposal for performance improvement in two-dimensional 

    photonic  crystal-based  2-To-4  decoders.  Laser  Phys.  30,  (2020).  https://doi.org/10.1088/1555-6611/ab9089. 

    [18]   Anagha, E.G., Jeyachitra, R.K.: Optimized design of an all-optical XOR gate with high contrast 

    ratio  and  ultra-compact  dimensions.  Appl.  Phys.  B  Lasers  Opt.  128,  (2022). 

    https://doi.org/10.1007/s00340-021-07747-x.

    [19]   Photonic  Design  Software  |  RSoft  Products",  Synopsys.com,  2019.  [Online].  Available: 

    https://www.synopsys.com/optical-solutions/rsoft.html. [Accessed: 28- Jan- 2023].

    [20]   "COMSOL  Multiphysics®  Software  -  Understand,  Predict,  and  Optimize",  COMSOL 

    Multiphysics©,  2019.  [Online].  Available:  https://www.comsol.com/comsol-multiphysics. 

    [Accessed: 28- Jan- 2023].

    [21]   Salmanpour,  A.,  Mohammadnejad,  S.,  Bahrami,  A.:  All-optical  photonic  crystal  AND,  XOR, 

    and  or  logic  gates  using  nonlinear  Kerr  effect  and  ring  resonators.  J.  Mod.  Opt.  62,  693 –700 

    (2015). https://doi.org/10.1080/09500340.2014.1003256.

    [22]   Fasihi,  K.:  Design  and  simulation  of  linear  logic  gates  in  the  two-dimensional  square-lattice 

    photonic  crystals.  Optik  (Stuttg).  127,  4669–4674  (2016). 

    https://doi.org/10.1016/j.ijleo.2016.02.012.

    [23]   Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR 

    logic gates using nonlinear Kerr effect and ring resonat ors. Opt. Quantum Electron. 47, 3689–

    3703 (2015). https://doi.org/10.1007/s11082-015-0238-7.

    [24]   Pirzadi,  M.,  Mir,  A.,  Bodaghi,  D.:  Realization  of  Ultra-Accurate  and  Compact  All-Optical 

    Photonic  Crystal  or  Logic  Gate.  IEEE  Photonics  Technol.  Lett.  28,  2387–2390  (2016). 

    https://doi.org/10.1109/LPT.2016.2596580.

    [25]   Saranya,  D.,  Rajesh,  A.:  Design  and  analysis  of  optical  and  and  or  logic  gates  using  two 

    dimensional photonic crystal. Proc. Int. Conf. Inven. Comput. Informatics, ICICI 2017. 253 –257 

    (2018). https://doi.org/10.1109/ICICI.2017.8365349.

    [26]   Rahmani, A., Asghari, M.: An ultra-compact and high speed all optical OR/NOR gate based on 

    nonlinear  PhCRR.  Optik  (Stuttg).  138,  314–319  (2017). 

    https://doi.org/10.1016/j.ijleo.2017.03.034.

    [27]   Hussein, H.M.E., Ali, T.A., Rafat, N.H.: New designs of a complete set of Photonic Crystals 

    logic gates. Opt. Commun. 411, 175–181 (2018). https://doi.org/10.1016/j.optcom.2017.11.043.

    [28]   Rebhi, S., Najjar, M.: A new design of a photonic crystal ring resonator based on Kerr effect for 

    all-optical logic gates. Opt. Quantum Electron. 50, 1–17 (2018). https://doi.org/10.1007/s11082-018-1628-4.

    [29]   Mostafa,  T.S.,  Mohammed, N.A.,  El-Rabaie,  E.S.M.:  Ultra-High  bit rate  all-optical  AND/OR 

    logic  gates  based  on  photonic  crystal  with  multi-wavelength  simultaneous  operation.  J.  Mod. 

    Opt. 66, (2019). https://doi.org/10.1080/09500340.2019.1598587.

    [30]   Poursaleh, A., Andalib, A.: An all optical majority gate using nonlinear photonic crystal based 

    ring resonators. Opt. Appl. 49, 487–498 (2019). https://doi.org/10.5277/oa190310.

    [31]   Prabha,  K.R.,  Robinson,  S.:  Ultra  Compact,  High  Contrast  Ratio  Based  all  Optical  OR  Gate 

    Using  Two  Dimensional  Photonic  Crystals.  Silicon.  13,  3521–3529  (2021). 

    https://doi.org/10.1007/s12633-020-00811-9.

    [32]   Mostafa, T.S., Kroush, S.A., Rabaie, E.-S.M.E.-: Photonic Crystal OR Gate with Minimum Size 

    and  Ring  Resonator  Based  Structure.  2–7  (2022)  6th  IUGRC  International  Undergraduate 

    Research Conference,Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

    [33]   Mostafa, T.S., Kroush, S.A., Rabaie, E.-S.M.E.-: Simultaneous Operation of Photonic Crystal 

    OR-  XOR-NOT  Gates  with  Minimum  Size  and  High  Bit  Rate  Ring  Resonator-Interference 

    Based  Structure.  222–227  (2022).,  2022  10th  International  Japan-Africa  Conference  on 

    Electronics, Communications, and Computations (JAC-ECC).

    Cite This Article As :
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie. "Photonic Crystal Circuitry and its Impact on Wireless Networks." Full Length Article, Vol. 6, No. 1, 2023 ,PP. 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie. (2023). Photonic Crystal Circuitry and its Impact on Wireless Networks. Journal of , 6 ( 1 ), 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie. "Photonic Crystal Circuitry and its Impact on Wireless Networks." Journal of , 6 no. 1 (2023): 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie. (2023). Photonic Crystal Circuitry and its Impact on Wireless Networks. Journal of , 6 ( 1 ), 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie. Photonic Crystal Circuitry and its Impact on Wireless Networks. Journal of , (2023); 6 ( 1 ): 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)
    Tamer S. Mostafa, Shaimaa A. Kroush, El- Sayed M. El- Rabaie, Photonic Crystal Circuitry and its Impact on Wireless Networks, Journal of , Vol. 6 , No. 1 , (2023) : 63-75 (Doi   :  https://doi.org/10.54216/IJWAC.060106)