Volume 27 , Issue 2 , PP: 407-412, 2026 | Cite this article as | XML | Html | PDF | Full Length Article
Waseem Ghazi Alshanti 1 *
Doi: https://doi.org/10.54216/IJNS.270233
In this paper, we utilize the concept of point-wise independent set of closed operators that enabled us to find atomic solutions of the non-homogeneous α−fractional abstract Cauchy problem of order n. The proposed fractional abstract Cauchy problem is
Anu(nα)(t) + An−1u((n−1)α)(t) + · · · + A1u(α)(t) + Aâ—¦u(t) = f (t)
where the involved operators An, An−1, · · · , Aâ—¦ are closed and linear on a given Banach space and the unknown function u(t) is assumed to be n-times α−differentiable. Beyond the deterministic setting, we indicate how the atomic-solution framework extends naturally when coefficients, data, or initial states are modeled as neutrosophic (single-valued) quantities, thereby accommodating uncertainty and indeterminacy at the operator or forcing level.
&alpha , -fractional Abstract Cauchy problem of order n , Pointwise independent operators , Atomic solution , Conformable fractional derivative
[1] F. Neubrander. Well-posedness of higher order abstract Cauchy problems, Transactions of the American Mathematical Society, vol. 295(1), 257-290, 1986.
[2] W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, Springer Science & Business Media, vol. 96, 2011.
[3] Y. Lyubich. The classical and local Laplace transformation in an abstract Cauchy problem. Russian Mathematical Surveys. vol. 30;21(3):1, 1996.
[4] R. deLaubenfels. Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup forum, vol. 41. Springer-Verlag, 1990.
[5] Kreyszig E. Introductory functional analysis with applications, Hoboken, New Jersey, NJ: John Wiley & Sons; 1991 Jan 16. https://doi.org/10.1137/1021075
[6] R. Khalil and L. Abdullah. Atomic solution of certain inverse problems. European Journal of Pure and Applied Mathematics. 2; 3(4):725–9, 2010.
[7] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative. Journal of Computational and Applied Mathematics, vol. 264, 65–70, 2014.
[8] D. A. Judeh, M. A. Hammad. Applications of Conformable Fractional Pareto Probability Distribution, International Journal of Advances in Soft Computing & Its Applications, vol. 1;14(2), 2022.
[9] I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani. Design fractional-order PID controllers for single-joint robot arm model. Int. J. Advance Soft Compu. Appl. vol. 1;14(2), 2022.
[10] F. A. N. Al-Qadi, R. M. Al-Azzam, and M. T. Al-Qadi. New Approaches in Fractional Differential Equations and Their Applications. Journal of Mathematics and Computer Science, vol. 29(3), 2024.