168 131
Full Length Article
Fusion: Practice and Applications
Volume 9 , Issue 1, PP: 38-46 , 2022 | Cite this article as | XML | Html |PDF

Title

Blog Feedback Prediction based on Ensemble Machine Learning Regression Model: Towards Data Fusion Analysis

Authors Names :   Hamzah A. Alsayadi   1 *     El-Sayed M. El-Kenawy   2     Abdelhameed Ibrahim   3     Marwa M. Eid   4     Abdelaziz A. Abdelhamid   5  

1  Affiliation :  Computer Science Department, Faculty of Sciences, Ibb University, Yemen

    Email :  hamzah.sayadi@cis.asu.edu.eg


2  Affiliation :  Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt

    Email :  skenawy@ieee.org


3  Affiliation :  Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, 35516, Mansoura Egypt

    Email :  afai79@mans.edu.eg


4  Affiliation :  Faculty of Artifcial Intelligence, Delta University for Science and Technology, Mansoura, Egypt

    Email :  marwa.3eeed@gmail.com


5  Affiliation :  Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt

    Email :  abdelaziz@cis.asu.edu.eg



Doi   :   https://doi.org/10.54216/FPA.090103

Received: May 06, 2022 Accepted: September 20, 2022

Abstract :

The last decade lead to an unbelievable growth of the importance of social media. Due to the huge amounts of documents appearing in social media, there is an enormous need for the automatic analysis of such documents. In this work, we proposed various regression models for the blog feedback prediction to be used in the data fusion environment. These models include decision tree regressor, MLP regressor, SVR, random forest regressor, and K-Neighbors regressor. The models are enhanced by average ensemble and ensemble using K-Neighbors regressor. The Blog Feedback dataset is used for training and evaluating the proposed models. The results show that there is a decrease in RMSE, MAE, MBE, R, R2, RRMSE, NSE, and WI when compared to the traditional methods.

Keywords :

Blog feedback prediction; Ensemble model; Machine learning; Regression model; Data fusion

References :

[1] Krisztian Buza. Feedback prediction for blogs. Data analysis, machine learning and knowledge discovery. Springer, Cham, 2014. 145-152.

[2] Harsurinder Kaur, and Husanbir Singh Pannu. Blog response volume prediction using adaptive neuro fuzzy inference system. 2018 9th international conference on computing, communication and networking technologies (ICCCNT). IEEE, 2018.

[3] Krisztian Buza, and Tomaš Horváth. Factorization Machines for Blog Feedback Prediction. International Conference on Computer Recognition Systems. Springer, Cham, 2019.

[4] M. Sterling, P. Leung, D. Wright, and T. F. Bishop. The use of social media in graduate medical education: a systematic review. Academic Medicine, vol. 92, no. 7, pp. 1043–1056, 2017.

[5] E. Bonson, S. Royo, and M. Ratkai. Citizens’ engagement on local governments’ facebook sites. an empirical analysis: The impact of different media and content types in western Europe. Government Information Quarterly, vol. 32, no. 1, pp. 52–62, 2015.

[6] D. A. Huffaker and S. L. Calvert. Gender, identity, and language use in teenage blogs. Journal of computer-mediated communication, vol. 10, no. 2, p. JCMC10211, 2005.

[7] C. G. Maurya, S. Gore, and D. S. Rajput. A use of social media for opinion mining: An overview (with the use of hybrid textual and visual sentiment ontology). In Proceedings of International Conference on Recent Advancement on Computer and Communication, pp. 315–324, Springer, 2018.

[8] Krisztian Buza, Alexandros Nanopoulos, and Gábor Nagy. Nearest neighbor regression in the presence of bad hubs. Knowledge-Based Systems 86 (2015): 250-260.

[9] Mandeep Kaur, and Prince Verma. "Comment volume prediction using regression." International Journal of Computer Applications 151.1 (2016): 1-9.

[10] Kamaljot Singh, Ranjeet Kaur Sandhu, and Dinesh Kumar. Comment volume prediction using neural networks and decision trees. IEEE UKSim-AMSS 17th International Conference on Computer Modelling and Simulation, UKSim2015 (UKSim2015). 2015.

[11] Hieu Tran, and Maxim Shcherbakov. Detection and prediction of users attitude based on real-time and batch sentiment analysis of facebook comments. International conference on computational social networks. Springer, Cham, 2016.

[12] Carlos Castillo, et al. Characterizing the life cycle of online news stories using social media reactions. Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing. 2014.

[13] Jingfei Du, Hua Xu, and Xiaoqiu Huang. Box office prediction based on microblog. Expert Systems with Applications 41.4 (2014): 1680-1689.

[14] Md Taufeeq Uddin. Automated blog feedback prediction with ada-boost classifier. 2015 international conference on informatics, electronics & vision (ICIEV). IEEE, 2015.

[15] Minh-Thu Tran-Nguyen, et al. Decision tree using local support vector regression for large datasets. Asian Conference on Intelligent Information and Database Systems. Springer, Cham, 2018.

[16] Hamzah A. Alsayadi, Abdelaziz A. Abdelhamid, El-Sayed M. El-Kenawy, Abdelhameed Ibrahim, and Marwa M. Eid. Improving the Regression of Air Quality Using Ensemble of Machine Learning Models. Journal of Artificial Intelligence and Metaheuristics 1.2 (2022): 1-8.

[17] Hamzah A. Alsayadi, Nima Khodadadi, and Sunil Kumar. Improving the Regression of Communities and Crime Using Ensemble of Machine Learning Models.  Journal of Artificial Intelligence and Metaheuristics 1.1 (2022): 27-34.

[18] Wenjuan Wei, Olivier Ramalho, Laeticia Malingre, Sutharsini Sivanantham, John C Little, and Corinne Mandin. Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5):704– 726, 2019.

[19] El-Sayed M. El-Kenawy, Seyedali Mirjalili, Fawaz Alassery, Yu-Dong Zhang, Marwa Metwally Eid, Shady Y. El-Mashad, Bandar Abdullah Aloyaydi, Abdelhameed Ibrahim, and Abdelaziz A. Abdelhamid. Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems. IEEE Access, 10:40536–40555, 2022.

[20] Abdelaziz A. Abdelhamid, El-Sayed M. El-Kenawy, Bandar Alotaibi, Ghada M. Amer, Mahmoud Y. Abdelkader, Abdelhameed Ibrahim, and Marwa Metwally Eid. Robust Speech Emotion Recognition Using CNN+LSTM Based on Stochastic Fractal Search Optimization Algorithm. IEEE Access, 10:49265– 49284, 2022.

[21] S Abdullah, M Ismail, and AN Ahmed. Multi-layer perceptron model for air quality prediction. Malaysian Journal of Mathematical Sciences, 13:85–95, 2019.

[22] Doaa Sami Khafaga, Amel Ali Alhussan, El-Sayed M. El-kenawy, Ali E. Takieldeen, Tarek M. Hassan, Ehab A. Hegazy, Elsayed Abdel Fattah Eid, Abdelhameed Ibrahim, and Abdelaziz A. Abdelhamid. Metaheuristics for Feature Selection and Classifcation in Diagnostic Breast-Cancer. Computers, Materials & Continua, 73(1):749–765, 2022.

[23] Doaa Sami Khafaga, Amel Ali Alhussan, El-Sayed M. El-kenawy, Abdelhameed Ibrahim, Said H. Abd Elkhalik, Shady Y. El-Mashad, and Abdelaziz A. Abdelhamid. Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM. Computers, Materials & Continua, 73(1):865–881, 2022.

[24] Ruizhi Zhong, Raymond L Johnson Jr, and Zhongwei Chen. Using machine learning methods to identify coals from drilling and logging-while-drilling lwd data. In Asia Pacifc Unconventional Resources Technology Conference, Brisbane, Australia, 18-19 November 2019, pages 970–994. Unconventional Resources Technology Conference, 2020.

[25] Nagwan Abdel Samee, El-Sayed M. El-Kenawy, Ghada Atteia, Mona M. Jamjoom, Abdelhameed Ibrahim, Abdelaziz A. Abdelhamid, Noha E. El-Attar, Tarek Gaber, Adam Slowik, and Mahmoud Y. Shams. Metaheuristic Optimization Through Deep Learning Classifcation of COVID-19 in Chest X-Ray Images. Computers, Materials & Continua, 73(2):4193–4210, 2022.

[26] Hussah Nasser AlEisa, El-Sayed M. El-kenawy, Amel Ali Alhussan, Mohamed Saber, Abdelaziz A. Abdelhamid, and Doaa Sami Khafaga. Transfer Learning for Chest X-rays Diagnosis Using Dipper Throated Algorithm. Computers, Materials & Continua, 73(2):2371–2387, 2022.

[27] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

[28] Doaa Sami Khafaga, Amel Ali Alhussan, El-Sayed M. El-Kenawy, Abdelhameed Ibrahim, Marwa Metwally Eid, and Abdelaziz A. Abdelhamid. Solving optimization problems of metamaterial and double t-shape antennas using advanced meta-heuristics algorithms. IEEE Access, 10:74449–74471, 2022.

[29] Burhan BARAN. Air quality index prediction in besiktas district by artifcial neural networks and k nearest neighbors. Muhendislik Bilimleri ve Tasarım Dergisi ¨ , 9(1):52–63, 2021.


Cite this Article as :
Hamzah A. Alsayadi , El-Sayed M. El-Kenawy , Abdelhameed Ibrahim , Marwa M. Eid , Abdelaziz A. Abdelhamid, Blog Feedback Prediction based on Ensemble Machine Learning Regression Model: Towards Data Fusion Analysis, Fusion: Practice and Applications, Vol. 9 , No. 1 , (2022) : 38-46 (Doi   :  https://doi.org/10.54216/FPA.090103)