297 214
Full Length Article
Fusion: Practice and Applications
Volume 14 , Issue 1, PP: 178-189 , 2024 | Cite this article as | XML | Html |PDF

Title

Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes

  Thylashri S. 1 * ,   Rajalakshmi N. R. 2

1  Department of Computer Science and Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India
    (thyla.csrd@gmail.com)

2  Department of Computer Science and Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India
    (researchwork411@gmail.com)


Doi   :   https://doi.org/10.54216/FPA.140115

Received: June 16, 2023 Revised: October 16, 2023 Accepted: November 26, 2023

Abstract :

Constraints perceived in different socioeconomic situations reinforce land use patterns and land cover (LULC) at different levels. However, the statistical information regarding the LULC variations encounters enormous significance for the execution and modelling of appropriate environmental variations and resource management with the available remote sensed data from diverse satellite images and advanced computing technologies; information is generally retrieved from the image classification approaches. However, a broader quantitative analysis of various classification approaches is crucial to choosing an effectual classifier model to acquire appropriate land use regions. We concentrate on the Karavetti region and its related fields in this study. We use a Non-Linear Recurrent Convolutional Neural Network (NLR-CNN) to analyze the data statistically. Well-known techniques such as Support Vector Machine (SVM), Random Forest (RF), and Decision Tree (DT), among others are used to evaluate the model performance. High-resolution images and the data points supplied are also used to assess the accuracy of the categorization and prediction. A confusion matrix is generated where the land cover regions show superior classification accuracy with the fusion model. Also, the NDVI facts and additional metrics like loss, error rate and kappa coefficients are analyzed. Therefore, the outcomes show that the anticipated is considered more robust with better performance to enhance the classification accuracy with the specific land cover regions.

Keywords :

land cover; land use; classification; learning approaches; and fusion-based prediction

References :

[1] Mohammadimanesh, B. Salehi, M. Mahdianpari, B. Brisco and M. Motagh, "Multi-temporal multi-frequency and multi-polarization coherence and SAR backscatter analysis of wetlands," ISPRS J. Photogramm. Remote Sens., vol. 142, pp. 78-93, 2018.

[2] Mahdianpari et al., "Fisher linear discriminant analysis of coherency matrix for wetland classification using PolSAR," Remote Sens. Environ., vol. 206, pp. 300-317, 2018.

[3] M. Belgiu and L. Drăguţ, "Random forest in remote sensing: A review of applications and future directions," ISPRS J. Photogramm. Remote Sens., vol. 114, pp. 24-31, 2016.

[4] Mahdianpari, B. Salehi, F. Mohammadimanesh and B. Brisco, "An assessment of simulated compact polarimetric SAR data for wetland classification using random forest algorithm," Can. J. Remote Sens., vol. 43, no. 5, pp. 468-484, 2017.

[5] Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," Proc. 22nd ACM Int. Conf. Multimedia, pp. 675-678, 2014.

[6] Amani, M., B. Salehi, S. Mahdavi, and B. Brisco. 2018. “Spectral Analysis of Wetlands Using Multi-Source Optical Satellite Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 144: 119–136.

[7] Davis, P., F. Aziz, M. T. Newaz, W. Sher, and L. Simon. 2021. “The Classification of Construction Waste Material Using a Deep Convolutional Neural Network.” Automation in Construction 122 (February): 103481.

[8] Berhane, T. M., C. R. Lane, Q. Wu, B. C. Autrey, O. A. Anenkhonov, V. V. Chepinoga, and H. Liu. 2018. “Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory.” Remote Sensing 10 (4): 580. 

[9] Jamali, A. 2020a. “Land Use Land Cover Mapping Using Advanced Machine Learning Classifiers: A Case Study of Shiraz City, Iran.” Earth Science Informatics 13 (4): 1015–1030.

[10] Ji, S., C. Zhang, A. Xu, Y. Shi, and Y. Duan. 2018. “3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images.” Remote Sensing 10 (2): 75.

[11] Liu, K., S. Wu, Z. Luo, Z. Gongze, X. Ma, Z. Cao, and H. Li. 2021 February. “An Intelligent Fault Diagnosis Method for Transformer Based on IPSO-GcForest.” In Mathematical Problems in Engineering 2021, edited by M. Kunicki. Hindawi: 6610338. 

[12] Mahdianpari, M., B. Salehi, F. Mohammadimanesh, and M. Motagh. 2017. “Random Forest Wetland Classification Using ALOS-2 L-Band, RADARSAT-2 C-Band, and TerraSAR-X Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 130: 13–31.

[13] Mahdianpari, M., B. Salehi, M. Rezaee, F. Mohammadimanesh, and Y. Zhang. 2018. “Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery.” Remote Sensing 10 (7): 1119.

[14] Sherubha, "Graph-Based Event Measurement for Analyzing Distributed Anomalies in Sensor Networks," Sådhanå(Springer), 45:212, https://doi.org/10.1007/s12046-020-01451-w

[15] Sherubha, "An Efficient Network Threat Detection and Classification Method using ANP-MVPS Algorithm in Wireless Sensor Networks," International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-8 Issue-11, September 2019

[16] Sherubha, "An Efficient Intrusion Detection and Authentication Mechanism for Detecting Clone Attack in Wireless Sensor Networks," Journal of Advanced Research in Dynamical and Control Systems (JARDCS), Volume 11, issue 5, Pg No. 55-68

[17] Maxwell, A. E., T. A. Warner, and F. Fang. 2018. “Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review.” International Journal of Remote Sensing 39 (9): 2784–2817.

[18] Rubec, C. 2018. “The Canadian Wetland Classification System.” In Finlayson C.M. et al. (eds). The Wetland Book, 1577–1581. Dordrecht, The Netherlands: Springer.

[19] Song, H., X.-Y. Han, C. E. Montenegro-Marin, and S. Krishnamoorthy. 2021. “Secure Prediction and Assessment of Sports Injuries Using Deep Learning Based Convolutional Neural Network.” Journal of Ambient Intelligence and Humanized Computing 12 (3): 3399–3410.

[20] Sun, X., P. Wang, C. Wang, Y. Liu, and K. Fu. 2021. “PBNet: Part-Based Convolutional Neural Network for Complex Composite Object Detection in Remote Sensing Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 173 (March): 50–65.

[21] Wenping, M., Y. Hui, Y. Wu, X. Yunta, H. Tao, J. Licheng, and H. Biao. 2019. “Change Detection Based on Multi-Grained Cascade Forest and Multi-Scale Fusion for SAR Images.” Remote Sensing 11 (2): 142.

[22] Zhang, J., and H. Song. 2021. “Multi-Feature Fusion for Weak Target Detection on Sea-Surface Based on FAR Controllable Deep Forest Model.” Remote Sensing 13 (4): 812.

[23] Zhiyuan, S., M. Li, J. Zhang, B. Hu, G. Qi, and Y. Zhu. 2021. “Transient Voltage Stability Assessment Method Based on GcForest.” Journal of Physics. Conference Series 1914 (1): IOP Publishing: 012025.

[24] Alqahtani, F., Abotaleb, M., Subhi, A.A. et al. A hybrid deep learning model for rainfall in the wetlands of southern Iraq. Model. Earth Syst. Environ. (2023).

[25] Zhang F, Fleyeh H, Bales C (2022) A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting. J Oper Res Soc 73(2):301–325

[26] Wang Y, Liao W, Chang Y (2018) Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 11(8):2163

[27] Song X, Liu Y, Xue L, Wang J, Zhang J, Wang J, et al. (2020) Time-series well performance prediction based on long short-term memory (LSTM) neural network model. J Petrol Sci Eng 186

[28] Seidu J, Ewusi A, Kuma J, Ziggah Y, Voigt H (2022) A hybrid groundwater level prediction model using signal decomposition and optimized extreme learning machine. Model Earth Syst Environ 8(3):3607–3624

[29] Reddy D, Prasad P (2018) Prediction of vegetation dynamics using NDVI time series data and LSTM. Model Earth Syst Environ 4(1):409–419

[30] Nie Q, Wan D, Wang R (2021) CNN-BiLSTM water level prediction method with an attention mechanism. J Phys 2078(1):012032

[31] Niclas Ståhl a b, Lisa Weimann, “Identifying wetland areas in historical maps using deep convolutional neural networks”, Ecological Informatics, Volume 68, May 2022, 101557

[32]Kumar Mainali a, Michael Evans, David Saavedra, Emily Mills, Becca Madsen, Susan Minnemeyer, “Convolutional neural network for high-resolution wetland mapping with open data: Variable selection and the challenges of a generalizable model”, Science of The Total Environment, Vol. 861, 25 February 2023, 160622 


Cite this Article as :
Style #
MLA Thylashri S., Rajalakshmi N. R.. "Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes." Fusion: Practice and Applications, Vol. 14, No. 1, 2024 ,PP. 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)
APA Thylashri S., Rajalakshmi N. R.. (2024). Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes. Journal of Fusion: Practice and Applications, 14 ( 1 ), 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)
Chicago Thylashri S., Rajalakshmi N. R.. "Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes." Journal of Fusion: Practice and Applications, 14 no. 1 (2024): 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)
Harvard Thylashri S., Rajalakshmi N. R.. (2024). Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes. Journal of Fusion: Practice and Applications, 14 ( 1 ), 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)
Vancouver Thylashri S., Rajalakshmi N. R.. Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes. Journal of Fusion: Practice and Applications, (2024); 14 ( 1 ): 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)
IEEE Thylashri S., Rajalakshmi N. R., Wetland Mapping by Fusion of Deep learning and Ensemble Model for Enhancing Prediction Outcomes, Journal of Fusion: Practice and Applications, Vol. 14 , No. 1 , (2024) : 178-189 (Doi   :  https://doi.org/10.54216/FPA.140115)