1172 732
Full Length Article
Fusion: Practice and Applications
Volume 1 , Issue 1, PP: 40-48 , 2020 | Cite this article as | XML | Html |PDF


Study of Multi-Prime RSA

Authors Names :   Surinder Kaur   1 *     Shivani Mankotia   2     Pooja Bharadwaj   3  

1  Affiliation :  Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India

    Email :  kaur.surinder@bharatividyapeeth.edu

2  Affiliation :  Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India

    Email :  mankotias@acm.org

3  Affiliation :  Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India

    Email :  bharadwajp@acm.org

Doi   :   https://doi.org/10.54216/FPA.010105

Abstract :

This paper studies and analyses the encryption and decryption times of a popular variant of the RSA algorithm, the multi-prime RSA. This algorithm uses more than two prime numbers for the encryption process. In this paper, 3, 4, and 5 prime RSA algorithms have been implemented and studied. The rate of increase of encryption and decryption times concerning the number of primes used is also illustrated and compared graphically.

Keywords :

RSA algorithm; encryption; decryption; n-prime RSA

References :

[1]    Milanov, E. (2009). The RSA algorithm. RSA Laboratories, 1-11. 

[2]    Bahig, H. M., Bhery, A., & Nassr, D. I. (2012, October). Cryptanalysis of multi-prime RSA with small prime difference. In International Conference on Information and Communications Security (pp. 33-44). Springer, Berlin, Heidelberg. 

[3]    Zheng, M., & Hu, H. (2015). A New Factoring Attack on Multi-Prime RSA with Small Prime Difference. IACR Cryptology ePrint Archive, 2015, 1137

[4]    Damgård, I., Mikkelsen, G. L., & Skeltved, T. (2014, December). On the security of distributed multiprime RSA. In International Conference on Information Security and Cryptology (pp. 18-33). Springer, Cham. 

[5]    Srivenkatesh, M., & Vanitha, K. Implementing Multiprime RSA Algorithm to Enhance the Data Security in Federated Cloud Computing. International Journal of Advanced Research in Computer and Communication EngineeringVol, 4. 

[6]    Collins, T., Hopkins, D., Langford, S., & Sabin, M. (1998). U.S. Patent No. 5,848,159. Washington, DC: U.S. Patent and Trademark Office.

[7]    Takagi, T. (1998, August). Fast RSA-type cryptosystem modulo p k q. In Annual International Cryptology Conference (pp. 318-326). Springer, Berlin, Heidelberg. 

[8]    Takagi, T., & Naito, S. (2002). U.S. Patent No. 6,396,926. Washington, DC: U.S. Patent and Trademark Office. 

[9]    Prakash, G. L., Prateek, M., & Singh, I. (2014, July). Data encryption and decryption algorithms using key rotations for data security in cloud system. In 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014) (pp. 624-629). IEEE. 

[10] Hinek, M. J., Low, M. K., & Teske, E. (2002, August). On some attacks on multi-prime RSA. In International Workshop on Selected Areas in Cryptography (pp. 385-404). Springer, Berlin, Heidelberg. 

[11] Xia, Z. Z. Z. On the Variants and Speed Methods of RSA.

[12] Goshwe, N. Y. (2013). Data encryption and decryption using RSA algorithm in a network environment. International Journal of Computer Science and Network Security (IJCSNS), 13(7), 9. 

[13] Shinde, G. N., & Fadewar, H. S. (2008, April). Faster RSA algorithm for decryption using Chinese remainder theorem. In International Conference on Computational and Experimental Engineering and Sciences (ICCES) (Vol. 5, No. 4, pp. 255-262). 

[14] Boneh, D., & Shacham, H. (2002). Fast variants of RSA. CryptoBytes, 5(1), 1-9.




Cite this Article as :
Surinder Kaur , Shivani Mankotia , Pooja Bharadwaj, Study of Multi-Prime RSA, Fusion: Practice and Applications, Vol. 1 , No. 1 , (2020) : 40-48 (Doi   :  https://doi.org/10.54216/FPA.010105)