348 263
Full Length Article
International Journal of Neutrosophic Science
Volume 18 , Issue 3, PP: 125-134 , 2022 | Cite this article as | XML | Html |PDF


Hybridization of Neutrosophic Logic with Quasi-Oppositional Chimp Optimization based Data Classification Model

Authors Names :   Sundus Naji AL-Aziz   1 *     Reem Atassi   2     Abd Al-Aziz Hosni El-Bagoury   3  

1  Affiliation :  Department of Mathematical Sciences, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

    Email :  snalaziz@pnu.edu.sa

2  Affiliation :  Faculty of Computer Information System, Higher Colleges of Technology, UAE

    Email :  ratassi@hct.ac.ae

3  Affiliation :  Higher Institute of Engineering and Technology, El-Mahala El-Kobra, Egypt.

    Email :  azizhel2013@yahoo.com

Doi   :   https://doi.org/10.54216/IJNS.1803011

Received: February3, 2022 Accepted: April 22, 2022

Abstract :

Data classification is the procedure of investigating structured or unstructured data and forming it into distinct classes depending upon file types, size, etc. It assist the organizations to derive important solutions based on the data and helps decision making process. The computational intelligence techniques such as neural computing, fuzzy logic, machine learning, etc. can be used to design effective data classification models. This study offers a Hybridization of Neutrosophic Logic with Quasi-Oppositional Chimp Optimization based Data Classification (HNLQOCO) model. The presented HNLQOCO algorithm aims to integrate the concepts of NL and QOCO algorithm for improved data classification outcomes. Besides, the QOCO algorithm is designed by incorporating the concepts of quasi oppositional based learning (QOBL) with traditional chimp optimization algorithm (COA). Here, the NL is applied to represent various kinds of knowledge and the QOCO algorithm is applied to tune the produced NS rules. The experimental result analysis of the HNLQOCO model is tested using three benchmark medical dataset. The obtained results reported the significant performance of the HNLQOCO model over the other methods.

Keywords :

Data classification , Neutrosophic Logic , Chimp optimization algorithm , Rule generation , QOBL.

References :

[1] Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N. and Asadpour, M., 2020. Boosting methods for multiclass

imbalanced data classification: an experimental review. Journal of Big Data, 7(1), pp.1-47.

[2] Griffiths, D. and Boehm, J., 2019. A review on deep learning techniques for 3D sensed data

classification. Remote Sensing, 11(12), p.1499.

[3] Basavegowda, H.S. and Dagnew, G., 2020. Deep learning approach for microarray cancer data

classification. CAAI Trans. Intell. Technol., 5(1), pp.22-33.

[4] Liu, H., Zhou, M. and Liu, Q., 2019. An embedded feature selection method for imbalanced data

classification. IEEE/CAA Journal of Automatica Sinica, 6(3), pp.703-715.

[5] Wang, Y., Gan, W., Yang, J., Wu, W. and Yan, J., 2019. Dynamic curriculum learning for imbalanced

data classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.


[6] Sherwani, F., Ibrahim, B.S.K.K. and Asad, M.M., 2021. Hybridized classification algorithms for data

classification applications: A review. Egyptian Informatics Journal, 22(2), pp.185-192.

[7] Xia, Y., Li, W., Zhuang, Q. and Zhang, Z., 2021. Quantum-enhanced data classification with a

variational entangled sensor network. Physical Review X, 11(2), p.021047.

[8] Chaudhuri, A. and Sahu, T.P., 2021. A hybrid feature selection method based on Binary Jaya algorithm

for micro-array data classification. Computers & Electrical Engineering, 90, p.106963.

[9] Jabbar, M.A., 2021. Breast cancer data classification using ensemble machine learning. Engineering

and Applied Science Research, 48(1), pp.65-72.

[10] Mirzaei, B., Nikpour, B. and Nezamabadi-pour, H., 2021. CDBH: A clustering and density-based

hybrid approach for imbalanced data classification. Expert Systems with Applications, 164, p.114035.

[11] Thanga Selvi, R. and Muthulakshmi, I., 2021. An optimal artificial neural network based big data

application for heart disease diagnosis and classification model. Journal of Ambient Intelligence and

Humanized Computing, 12(6), pp.6129-6139.

[12] Sun, Y. and Platoš, J., 2021. High‐dimensional data classification model based on random projection

and Bagging‐support vector machine. Concurrency and Computation: Practice and Experience, 33(9),


[13] Ramkissoon, A.N., Mohammed, S. and Goodridge, W., 2021. Determining an Optimal Data

Classification Model for Credibility-Based Fake News Detection. The Review of Socionetwork

Strategies, 15(2), pp.347-380.

[14] Aydadenta, H. and Adiwijaya, A., 2018. A clustering approach for feature selection in microarray data

classification using random forest. Journal of Information Processing Systems, 14(5), pp.1167-1175.

[15] Mikail Bal , Katy D. Ahmad , Arwa A. Hajjari , Rozina Ali, The Structure Of Imperfect Triplets In

Several Refined Neutrosophic Rings, Journal of Neutrosophic and Fuzzy Systems, Vol. 2 , No.

1, (2022) : 21-30 (Doi : https://doi.org/10.54216/JNFS.020103)

[16] Jain, A., Nandi, B.P., Gupta, C. and KumarTayal, D., 2019, March. A hybrid framework based on PSO

and neutrosophic set for document level sentiment analysis. In International Conference on Information

Technology and Applied Mathematics (pp. 372-379). Springer, Cham.

[17] Khishe, M. and Mosavi, M.R., 2020. Chimp optimization algorithm. Expert systems with

applications, 149, p.113338.

[18] Jia, H., Sun, K., Zhang, W. and Leng, X., 2021. An enhanced chimp optimization algorithm for

continuous optimization domains. Complex & Intelligent Systems, pp.1-18.

[19] Dataset Source: https://archive.ics.uci.edu/ml/datasets.php

[20] Basha, S.H., Abdalla, A.S. and Hassanien, A.E., 2016, December. Gnrcs: hybrid classification system

based on neutrosophic logic and genetic algorithm. In 2016 12th International Computer Engineering

Conference (ICENCO) (pp. 53-58). IEEE.

Cite this Article as :
Sundus Naji AL-Aziz , Reem Atassi , Abd Al-Aziz Hosni El-Bagoury, Hybridization of Neutrosophic Logic with Quasi-Oppositional Chimp Optimization based Data Classification Model, International Journal of Neutrosophic Science, Vol. 18 , No. 3 , (2022) : 125-134 (Doi   :  https://doi.org/10.54216/IJNS.1803011)