809 762
Full Length Article
International Journal of Neutrosophic Science
Volume 18 , Issue 4, PP: 223-237 , 2022 | Cite this article as | XML | Html |PDF

Title

Interval-Valued Neutrosophic Ideals of Hilbert Algebras

  Aiyared Iampan 1 * ,   P. Jayaraman 2 ,   S. D. Sudha 3 ,   N. Rajesh 4

1  Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand
    (aiyared.ia@up.ac.th)

2  Department of Mathematics, Bharathiyar University, Coimbatore 641046, Tamilnadu, India
    (jrmsathya@gmail.com)

3  Department of Mathematics, Bharathiyar University, Coimbatore 641046, Tamilnadu, India
    (sudhaa88@gmail.com)

4  Department of Mathematics, Rajah Serfoji Government College, Thanjavur 613005, Tamilnadu, India
    (nrajesh topology@yahoo.co.in)


Doi   :   https://doi.org/10.54216/IJNS.180420

Received: March 19, 2022 Accepted: June 29, 2022

Abstract :

The concept of interval-valued neutrosophic sets (IVNSs) was first introduced by Wang et al. (Wang, H.;

Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and applications

in computing. Hexis, Phoenix, Ariz, USA, 2005.). In this paper, the concept of IVNSs to ideals of Hilbert

algebras is introduced. The homomorphic inverse image of interval-valued neutrosophic ideals (IVN ideals)

in Hilbert algebras is also studied and some related properties are investigated.

Keywords :

Hilbert algebra; ideal; interval-valued neutrosophic ideal; level cut

References :

[1] Ahmad B.; Kharal, A. On fuzzy soft sets. Adv. Fuzzy Syst. 2009, 2009, Article ID 586507, 6 pages.

[2] Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20(1), 87–96.

[3] Atef, M.; Ali, M. I.; Al-shami, T. Fuzzy soft covering based multi-granulation fuzzy rough sets and their

applications. Comput. Appl. Math. 2021, 40(4), 115.

[4] Busneag, D. A note on deductive systems of a Hilbert algebra. Kobe J. Math. 1985, 2, 29–35.

[5] Busneag, D. Hilbert algebras of fractions and maximal Hilbert algebras of quotients. Kobe J. Math.

1988, 5, 161–172.

[6] Caˇgman, N.; Enginoˇglu, S.; Citak, F. Fuzzy soft set theory and its application. Iran. J. Fuzzy Syst. 2011,

8(3), 137–147.

[7] Chajda, I.; Halas, R. Congruences and ideals in Hilbert algebras. Kyungpook Math. J. 1999, 39(2),

429–429.

[8] Diego, A. Sur les alg´ebres de Hilbert. Collection de Logique Math. Ser. A (Ed. Hermann, Paris) 1966,

21, 1–52.

[9] Dudek, W. A. On fuzzification in Hilbert algebras. Contrib. Gen. Algebra 1999, 11, 77–83.

[10] Dudek, W. A.; Jun, Y. B. On fuzzy ideals in Hilbert algebra. Novi Sad J. Math. 1999, 29(2), 193–207.

[11] Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based

on the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22(15),

4959–4970.

[12] Garg, H.; Kumar, K. Distance measures for connection number sets based on set pair analysis and its

applications to decision-making process. Appl. Intell. 2018, 48(10), 3346–3359.

[13] Garg, H.; Singh, S. A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation

operators. Iran. J. Fuzzy Syst. 2018, 15(5), 69–93.

[14] Iampan, A.; Jayaraman, P.; Sudha, S. D.; Rajesh, N. Interval-valued neutrosophic subalgebras of Hilbert

algebras. (submitted).

[15] Jun, Y. B. Deductive systems of Hilbert algebras. Math. Japon. 1996, 43, 51–54.

[16] Jun, Y. B.; Smarandache, F.; Kim, C. S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13(1),

41–54.

[17] Smarandache, F. A unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic

probability. American Research Press, 1999.

[18] Smarandache, F. Neutrosophic set, a generalization of intuitionistic fuzzy sets. Int. J. Pure Appl. Math.

2005, 24(5), 287–297.

[19] Taboon, K.; Butsri, P.; Iampan, A. A cubic set theory approach to UP-algebras. J. Interdiscip. Math.

2020, 23(8), 1449–1486.

[20] Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory

and applications in computing. Hexis, Phoenix, Ariz, USA, 2005.

[21] Zadeh, L. A. Fuzzy sets. Inf. Control 1965, 8(3), 338–353.


Cite this Article as :
Style #
MLA Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh. "Interval-Valued Neutrosophic Ideals of Hilbert Algebras." International Journal of Neutrosophic Science, Vol. 18, No. 4, 2022 ,PP. 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)
APA Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh. (2022). Interval-Valued Neutrosophic Ideals of Hilbert Algebras. Journal of International Journal of Neutrosophic Science, 18 ( 4 ), 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)
Chicago Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh. "Interval-Valued Neutrosophic Ideals of Hilbert Algebras." Journal of International Journal of Neutrosophic Science, 18 no. 4 (2022): 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)
Harvard Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh. (2022). Interval-Valued Neutrosophic Ideals of Hilbert Algebras. Journal of International Journal of Neutrosophic Science, 18 ( 4 ), 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)
Vancouver Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh. Interval-Valued Neutrosophic Ideals of Hilbert Algebras. Journal of International Journal of Neutrosophic Science, (2022); 18 ( 4 ): 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)
IEEE Aiyared Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh, Interval-Valued Neutrosophic Ideals of Hilbert Algebras, Journal of International Journal of Neutrosophic Science, Vol. 18 , No. 4 , (2022) : 223-237 (Doi   :  https://doi.org/10.54216/IJNS.180420)