269 168
Full Length Article
International Journal of Neutrosophic Science
Volume 19 , Issue 1, PP: 148-165 , 2022 | Cite this article as | XML | Html |PDF

Title

Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version)

Authors Names :   Florentin Smarandache   1 *  

1  Affiliation :  Mathematics, Physical and Natural Science Division, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA

    Email :  smarand@unm.edu



Doi   :   https://doi.org/10.54216/IJNS.190111

Received: April 03, 2022 Accepted: August 08, 2022

Abstract :

In this paper, we prove that Neutrosophic Statistics is more general than Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, inferential procedures, probability distributions, graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic probability that is more general than imprecise and classical probabilities and has more detailed corresponding probability density functions. While Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments by Woodall et al. [1]. We show that not all indeterminacies (uncertainties) may be represented by intervals. Also, in some cases, we should better use hesitant sets (that have less indeterminacy) instead of intervals. We redirect the authors to the Plithogenic Probability and Plithogenic Statistics which are the most general forms of MultiVariate Probability and Multivariate Statistics respectively (including, of course, the Imprecise Probability and Interval Statistics as subclasses).

Keywords :

Neutrosophics; Plithogenics; Interval; MultiVariate Probability; MultiVariate Statistics; Imprecise Probability; Interval Statistics; Neutrosophic Numbers.

References :

[1] William H. Woodall, Anne R. Driscolli, and Douglas C. Montgomery, A Review and

Perspective on Neutrosophic Statistical Process Monitoring Methods, preprint, ResearchGate,

June 2022.

[2] Florentin Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing,

Craiova, 2014, 124 p. http://fs.unm.edu/NeutrosophicStatistics.pdf.

[3] H. Zhang, J. Wang, and X. Chen, Interval neutrosophic sets and their application in multicriteria

decision-making problems, Scientific World Journal Volume 2014, Article ID 645953, 15 pages,

http://dx.doi.org/10.1155/2014/645953.

[4] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and

Neutrosophic Probability, Sitech Publishing House, Craiova, 2013,

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf.

[5] F.Smarandache, Nidus idearum. Scilogs, II: de Rerum consecration (second edition) Brussels,

pages 109-110, 2016, http://fs.unm.edu/NidusIdearum2-ed2.pdf.

[6] F. Smarandache, Plithogenic Probability & Statistics are generalizations of MultiVariate

Probability & Statistics, Neutrosophic Sets, and Systems, Vol. 43, 280-289, 2021,

http://fs.unm.edu/NSS/PlithogenicProbabilityStatistics20.pdf.

[7] Frederica Gioia, Carlo N. Lauro, Basic Statistical Methods for Interval Data, Statistica

Applicata, Vol. 17, no. 1, pp. 1-29, 2005.

[8] Florentin Smarandache: A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy,

Neutrosophic Set, Neutrosophic Probability and Statistics (sixth edition). InfoLearnQuest, 1998 -

2007, 156 p. http://fs.unm.edu/eBook-Neutrosophics6.pdf

[9] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps, and Neutrosophic

Cognitive Maps, Xiquan, Phoenix, 211 p., 2003, http://fs.unm.edu/NCMs.pdf

[10] Florentin Smarandache: Introduction to Neutrosophic Statistics. Sitech & Education Publishing,

2014, 124 p. http://fs.unm.edu/NeutrosophicStatistics.pdf

[11] Florentin Smarandache: Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset.

Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics. Pons Editions,

Brussels, 2016, 168 p. http://fs.unm.edu/NeutrosophicOversetUndersetOffset.pdf

[12] Maikel Leyva Vázquez, Florentin Smarandache: Neutrosofía: Nuevos avances en el tratamiento

de la incertidumbre. Pons Editions, Bruselas, 2018, 74 p.

http://fs.unm.edu/NeutrosofiaNuevosAvances.pdf

[13] Tatiana Veronica Gutierrez Quinonez, Fabian Andres Espinoza, Ingrid Kathyuska Giraldo,

Angel Steven Asanza, Mauricio Daniel Montenegro: Estadistica y Probabilidades: Una Vision

Neutrosofica desde el Aprendizaje Basado en Problemas en la Construccion del

Conocimiento. Pons Editions, Bruselas, 2020, 131 p.

http://fs.unm.edu/EstadisticaYProbabilidadNeutrosofica.pdf

[14] F. Smarandache, Neutrosophic Statistics vs. Classical Statistics, a section in Nidus Idearum /

Superluminal Physics, Vol. 7, third edition, p. 117, 2019, http://fs.unm.edu/NidusIdearum7-

ed3.pdf .

[15] F. Smarandache, Nidus Idearum de Neutrosophia (Book Series), Editions Pons, Brussels,

Belgium, Vols. 1-7, 2016-2019; http://fs.unm.edu/ScienceLibrary.htm

[16] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and

Neutrosophic Probability, Sitech Publishing House, Craiova, 2013,

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf

[17] Rafif Alhabib: Formulation of the classical probability and some probability distributions due to

neutrosophic logic and its impact on Decision Making. PhD Thesis in Arabic, held under the

supervision of Dr. M. M. Ranna, Dr. H. Farah, Dr. A. A. Salama, Faculty of Science,

Department of Mathematical Statistics, University of Aleppo, Syrian Arab Republic,

2019. http://fs.unm.edu/NS/FormulationOfTheClassicalProbability-PhDThesis.pdf

[18] Florentin Smarandache: Operators on Single-Valued Neutrosophic Oversets, Neutrosophic

Undersets, and Neutrosophic Offsets. Journal of Mathematics and Informatics, Vol. 5, 2016, 63-

67.

[19] Florentin Smarandache: Interval-Valued Neutrosophic Oversets, Neutrosophic Undersets, and

Neutrosophic Offsets. International Journal of Science and Engineering Investigations, Vol. 5,

issue 54, 2016, Paper ID: 55416-01, 4 p.

[20] Nouran M. Radwan, M. Badr Senousy, Alaa El Din M. Riad: Approaches for Managing

Uncertainty in Learning Management Systems. Egyptian Computer Science Journal, vol. 40, no.

2, May 2016, 10 p.

[21] Muhammad Aslam: A Variable Acceptance Sampling Plan under Neutrosophic Statistical

Interval Method. Symmetry 2019, 11, 114, DOI: 10.3390/sym11010114.

[22] Soumyadip Dhar, Malay K. Kundu: Accurate segmentation of complex document image using

digital shearlet transform with neutrosophic set as uncertainty handing tool. Applied Soft

Computing, vol. 61, 2017, 412–426.

[23] B. Kavitha, S. Karthikeyan, P. Sheeba Maybell: An ensemble design of intrusion system for

handling uncertainty using Neutrosophic Logic Classifier. Knowlwdge-Based Systems, vol. 28,

2012, 88-96.

[24] Muhammad Aslam: A new attribute sampling plan using neutrosophic statistical interval

method. Complex & Intelligent Systems, 6 p. DOI: 10.1007/s40747-018-0088-6

[25] Muhammad Aslam, Nasrullah Khan, Mohammed Albassam: Control Chart for Failure-Censored

Reliability Tests under Uncertainty Environment. Symmetry 2018, 10, 690, DOI:

10.3390/sym10120690.

[26] Muhammad Aslam, Nasrullah Khan, Ali Hussein AL-Marshadi: Design of Variable Sampling

Plan for Pareto Distribution Using Neutrosophic Statistical Interval Method. Symmetry 2019, 11,

80, DOI: 10.3390/sym11010080.

[27] Jun Ye, Jiqian Chen, Rui Yong, Shigui Du: Expression and Analysis of Joint Roughness

Coefficient Using Neutrosophic Number Functions. Information, Volume 8, 2017, 13 pages.

[28] Jiqian Chen, Jun Ye, Shigui Du, Rui Yong: Expressions of Rock Joint Roughness Coefficient

Using Neutrosophic Interval Statistical Numbers. Symmetry, Volume 9, 2017, 7 pages.

[29] Adrian Rubio-Solis, George Panoutsos: Fuzzy Uncertainty Assessment in RBF Neural Networks

using neutrosophic sets for Multiclass Classification. Presented at 2014 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE) July 6-11, 2014, Beijing, China, 8 pages.

[30] Pierpaolo D’Urso: Informational Paradigm, management of uncertainty and theoretical

formalisms in the clustering framework: A review. Information Sciences, 400–401 (2017), pp.

30-62, 33 pages.

[31] Muhammad Aslam, Mohammed Albassam: Inspection Plan Based on the Process Capability

Index Using the Neutrosophic Statistical Method. Mathematics 2019, 7, 631, DOI:

10.3390/math7070631.

[32] Mirela Teodorescu, Florentin Smarandache, Daniela Gifu: Maintenance Operating System

Uncertainties Approached through Neutrosophic Theory. 8 p.

[33] Muhammad Aslam, Rashad A. R. Bantan, Nasrullah Khan: Monitoring the Process Based on

Belief Statistic for Neutrosophic Gamma Distributed Product. Processes 2019, 7, 209, DOI:

10.3390/pr7040209.

[34] Rafael Rojas-Gualdron, Florentin Smarandache, Carlos Diaz-Bohorquez: Application of The

Neutrosophical Theory to Deal with Uncertainty in Supply Chain Risk Management. AGLALA

2019; 10 (2): 1-19.

[35] Florentin Smarandache, Gheorghe Savoiu: Neutrosophic Index Numbers: Neutrosophic Logic

Applied in The Statistical Indicators Theory. Critical Review, Vol. XI, 2015, pp. 67-100.

[36] Murat Kirisci, Necip Simsek: Neutrosophic normed spaces and statistical convergence. Journal

of Analysis, 11 April 2020, DOI: 10.1007/s41478-020-00234-0.

[37] S.K. Patro: The Neutrosophic Statistical Distribution: More Problems, More Solutions. 17 p.

[38] Deepesh Kunwar, Jayant Singh, Florentin Smarandache: Neutrosophic statistical evaluation of

migration with particular reference to Jaipur. Octogon Mathematical Magazine, vol. 26, no. 2,

October 2018, 560-568.

[39] Deepesh Kunwar, Jayant Singh, Florentin Smarandache: Neutrosophic statistical techniques to

find migration pattern in Jaipur. Octogon Mathematical Magazine, vol. 26, no. 2, October 2018,

583-592.

[40] Muhammad Aslam, Osama H. Arif, Rehan Ahmad Khan Sherwani: New Diagnosis Test under

the Neutrosophic Statistics: An Application to Diabetic Patients. Hindawi, BioMed Research

International, Volume 2020, Article ID 2086185, 7 pages; DOI: 10.1155/2020/2086185.

[41] Jose L. Salmeron, Florentin Smarandache: Processing Uncertainty and Indeterminacy in

Information Systems success mapping. 13 p., arXiv:cs/0512047v2.

[42] Wenzhong Jiang, Jun Ye, Wenhua Cui: Scale Effect and Anisotropic Analysis of Rock Joint

Roughness Coefficient Neutrosophic Interval Statistical Numbers Based on Neutrosophic

Statistics. Journal of Soft Computing in Civil Engineering, 2-4 / 2018, 62-71; DOI:

10.5281/zenodo.3130240.

[43] Muhammad Aslam, P. Jeyadurga, Saminathan Balamurali, Ali Hussein Al-Marshadi: Time-

Truncated Group Plan under aWeibull Distribution based on Neutrosophic

Statistics. Mathematics 2019, 7, 905; DOI: 10.3390/math7100905

[44] A.A. Salama, M. Elsayed Wahed, Eman Yousif: A Multi-objective Transportation Data

Problems and their Based on Fuzzy Random Variables. Neutrosophic Knowledge, vol. 1, 2020,

41-53; DOI: 10.5281/zenodo.4269558.

[45] Philippe Schweizer: Uncertainty: two probabilities for the three states of

neutrosophy. International Journal of Neutrosophic Science (IJNS), Volume 2, Issue 1, 2020,

18-26; DOI: 10.5281/zenodo.3989350.

[46] Carlos N. Bouza-Herrera, Mir Subzar: Estimating the Ratio of a Crisp Variable and a

Neutrosophic Variable. International Journal of Neutrosophic Science (IJNS), Volume 11, Issue

1, 2020, 9-21; DOI: 10.5281/zenodo.4275712

[47] Angel Carlos Yumar Carralero, Darvin Manuel Ramirez Guerra, Giorver Perez Iribar: Analisis

estadistico neutrosofico en la aplicacion de ejercicios fisicos en la rehabilitacion del adulto

mayor con gonartrosis. Neutrosophic Computing and Machine Learning, Vol. 13, 1-9, 2020;

DOI: https://zenodo.org/record/3901770.

[48] Alexandra Dolores Molina Manzo, Rosa Leonor Maldonado Manzano, Blanca Esmeralda Brito

Herrera, Johanna Irene Escobar Jara: Analisis estadistico neutrosofico de la incidencia del voto

facultativo de los jovenes entre 16 y 18 anos en el proceso electoral del Ecuador. Neutrosophic

Computing and Machine Learning, Vol. 11, 9-14, 2020; DOI:

https://zenodo.org/record/3474439.

[49] Johana Cristina Sierra Morán, Jenny Fernanda Enríquez Chuga,

Wilmer Medardo Arias Collaguazo And

Carlos Wilman Maldonado Gudiño:Neutrosophic statistics applied to the analysis of socially

responsible participation in the community , Neutrosophic Sets and Systems, vol. 26, 2019, pp.

19 -28. DOI: 10.5281/zenodo.3244232

[50] Paúl Alejandro Centeno Maldonado, Yusmany Puertas Martinez, Gabriela Stephanie Escobar

Valverde, and Juan Danilo Inca Erazo: Neutrosophic statistics methods applied to demonstrate

the extra-contractual liability of the state from the Administrative Organic

Code, Neutrosophic Sets and Systems, vol. 26, 2019, pp. 29-34. DOI: 10.5281/zenodo.3244262

[51] S. K. Patro, F. Smarandache: The Neutrosophic Statistical Distribution - More Problems, More

Solutions, Neutrosophic Sets and Systems, vol. 12, 2016, pp. 73-

79. doi.org/10.5281/zenodo.571153

[52] Lilia Esther Valencia Cruzaty, Mariela Reyes Tomalá, Carlos Manuel Castillo Gallo and

Florentin Smarandache, A Neutrosophic Statistic Method to PredictTax Time Series in

Ecuador, Neutrosophic Sets and Systems, vol. 34, 2020, pp. 33-39.

DOI: 10.5281/zenodo.3843289; http://fs.unm.edu/NSS/NeutrosophicStatisticMethod.pdf

[53] Somen Debnath: Neutrosophication of statistical data in a study to assess the knowledge, attitude

and symptoms on reproductive tract infection among women. Journal of Fuzzy Extension &

Applications (JFEA), Volume 2, Issue 1, Winter 2021, 33-40; DOI:

10.22105/JFEA.2021.272508.1073.

[54] Muhammad Aslam, Rashad A.R. Bantan, Nasrullah Khan: Design of tests for mean and variance

under complexity-an application to rock measurement data. Elsevier: Measurement, Volume

177, June 2021, 109312; DOI: 10.1016/j.measurement.2021.109312.

[55] O.H. Arif, Muhammad Aslam: A new sudden death chart for the Weibull distribution under

complexity. Springer: Complex & Intelligent Systems (2021); DOI: 10.1007/s40747-021-00316-

x.

[56] Chen, J., Ye, J., Du, S., & Yong, R. (2017). Expressions of rock joint roughness coefficient

using neutrosophic interval statistical numbers. Symmetry, 9(7), 123.

[57] Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality

Technology, 18(4), 203-210.

[58] Montgomery, D. C. (2007). Introduction to statistical quality control: John Wiley & Sons.

[59] Woodall, W. H. (2022). Book review: Introduction to statistical process control: Introduction to

statistical process control by muhammad aslam, aamir saghir and liaquat ahmad, john wiley &

sons, hoboken, NJ. 2020. 304 pp. $120.00 hardcover, ISBN 978-1-119-52845-6: Taylor &

Francis.

[60] Woodall, W. H. (2022), Messages to F. Smarandache, M. Aslam and others, ResearchGate.net,

September 2022

[61] F. Smarandache, History of Neutrosophic Set, Logic, Probability and Statistics and their

Applications, Mathematics and Statistics Departments, King Abdulaziz University, Jeddah,

Saudi Arabia, 19 December 2019.

[62] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, lecture series, Nguyen

Tat Thanh University, Ho Chi Minh City, Vietnam, 31st May - 3th June 2016.

[63] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, Ho Chi Minh City

University of Technology (HUTECH), Ho Chi Minh City, Vietnam, 30th May 2016.

[64] F. Smarandache, Neutrosophic Set and Logic / Interval Neutrosophic Set and Logic /

Neutrosophic Probability and Neutrosophic Statistics / Neutrosophic Precalculus and Calculus /

Symbolic Neutrosophic Theory / Open Challenges of Neutrosophic Set, lecture series, Vietnam

national University, Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam,

lecture series, 14th May – 26th May 2016.

[65] F. Smarandache, Foundations of Neutrosophic Logic, Set, Probability and Statistics and their

Applications in Science. n-Valued Refined Neutrosophic Set, Logic, Probability and Statistics,

Universidad Complutense de Madrid, Facultad de Ciencia Matematicas, Departamento de

Geometria y Topologia, Instituto Matematico Interdisciplinar (IMI), Madrid, Spain, 9th July

2014.


Cite this Article as :
Florentin Smarandache, Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version), International Journal of Neutrosophic Science, Vol. 19 , No. 1 , (2022) : 148-165 (Doi   :  https://doi.org/10.54216/IJNS.190111)