1185 86
Full Length Article
International Journal of Neutrosophic Science
Volume 19 , Issue 3, PP: 53-62 , 2022 | Cite this article as | XML | Html |PDF

Title

Redesign of a drone (UAV) to obtain high flight autonomy, used in the analysis of Pitahaya crops based on neutrosophic control

Authors Names :   Pedro M. García   1 *     Gilberto F. Castro   2     Inelda A. Martillo   3     Maikel Y. L. Vázquez   4  

1  Affiliation :  Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Ecuador

    Email :  pedro.garciaa@ug.edu.ec


2  Affiliation :  Facultad de Ingenierìa - Computación, Universidad Católica de Santiago de Guayaquil, Ecuador; Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Ecuador

    Email :  gilberto.castroa@ug.edu.ec


3  Affiliation :  Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Ecuador

    Email :  inelda.martilloa@ug.edu.ec


4  Affiliation :  Universidad Regional Autonoma de los Andes, Ecuador

    Email :  mleyvaz@gmail.com



Doi   :   https://doi.org/10.54216/IJNS.190306

Received: April 13, 2022 Accepted: October 28, 2022

Abstract :

The use of "drones" stands out in precision agriculture for the analysis of vegetation and soil indices, the present work contemplates a redesign, construction and implementation of a "drone" using computer tools based on software engineering and technologies of info-communications, which allows optimizing one of the existing platforms in the drone market (SKYWALKER (X8)) for the evaluation of vegetation indices, as estimators of changes in different types of vegetation cover in Pitahaya crops in the province del Guayas, also carry out precise monitoring of large extensions of crops, minimizing human presence, controlling soil conditions through special systems, such as hydration, temperature or plant growth rate, chlorophyll level, among others, and the appearance of plagues that could affect the Pitahaya crops located prematurely, as well as the bases for a neutrosophic control system in designing platforms by using simulators. For the neutrosophic control, neutrosophic uninorms were used for the aggregation of the measurement results by regions.


 

Keywords :

Drone; precision agriculture; vegetation index; monitoring; neutrosophic control; neutrosophic uninorm.

References :

[1] Newcome, L.R. (2004) Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles, American

Institute of Aeronautics and Astronautics, Reston.

[2] Mogili, U.R. and Deepak, B.B.V.L. (2018) Review on Application of Drone Systems in Precision

Agriculture. Procedia Computer Science, 133, 502–509.

[3] Watts, A.C., Ambrosia, V.G. and Hinkley, E.A. (2012) Unmanned Aircraft Systems in Remote Sensing and

Scientific Research: Classification and Considerations of Use. Remote Sens, 4, 1671–1692.

[4] Vladareanu, V., Munteanu, R.I., Mumtaz, A., Smarandache, F. and Vladareanu, L. (2015) The optimization

of intelligent control interfaces using Versatile Intelligent Portable Robot Platform. Procedia Computer

Science, 65, 225 – 232.

[5] De-Baets, B. and Fodor, J. (1999) Van Melle’s combining function in MYCIN is a representable uninorm:

An alternative proof. Fuzzy Sets and Systems, 104, 133–136.

[6] González-Caballero, E., Leyva-Vázquez, M. and Smarandache, F. (2021) On Neutrosophic Uninorms.

Neutrosophic Sets and Systems, 45, 340–348.

[7] González-Caballero, E., Smarandache, F. and Leyva-Vázquez, M. (2019) On Neutrosophic Offuninorms.

Symmetry, 11, 1136.

[8] Smarandache, F. (2016) Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset: Similarly

for Neutrosophic Over-/Under-/Off- Logic Probability, and Statistics, Pons Editions, Brussels.

[9] Hajék, P. (1985) Combining functions for certainty degrees in consulting systems. International Journal of

Man-Machine Studies, 22, 59–76.

[10] XFLR5 Windows Version of XFLR5 url webpage: http://www.xflr5.com/xflr5.htm.

[11] González-Caballero, E., Leyva-Vázquez, M., Estupiñán-Ricardo, J. and Batista-Hernández, N. (2022)

NeutroGroups generated by uninorms: A theoretical approach. In: Theory and Applications of

NeutroAlgebras as Generalizations of Classical Algebras, pp. 155–179, IGI-Global.

[12] Batista-Hernández, N., González-Caballero, E., Valencia-Cruzaty, L.E., Ortega-Chávez, W., Padilla-Huarac,

C.F. and Chijchiapaza-Chamorro, S.L. (2022) Theoretical study of the NeutroAlgebra generated by the

combining function in Prospector and some pedagogical notes. In: Theory and Applications of

NeutroAlgebras as Generalizations of Classical Algebras, pp. 116–140, IGI-Global.

[13] Velazco, L.A.R., Quintana, J.X.I., Hurtado, C.R., Lomas, M.R.M.P. and Espinosa, J.S.P. (2021) Study of

the Situation of Venezuelan Emigrants. Neutrosophic Sets and Systems, 44, 18-25.

[14] Vayas-Valdivieso, W., Viteri-Rodríguez, J.A., Viteri-Villa, M.F., Rodríguez-Reyes, E.R. and Niño-Montero,

J.S. (2021) Assessment of Barriers to Access Public Services for Immigrants in Ecuador using a

NeutroAlgebra-based Model. Neutrosophic Sets and Systems, 44, 53-60.

[15] Silva-Jiménez, D., Valenzuela-Mayorga, J.A., Roja-Ubilla, M.E. and Batista-Hernández, N. (2021)

NeutroAlgebra for the evaluation of barriers to migrants’ access in Primary Health Care in Chile based

on PROSPECTOR function. Neutrosophic Sets and Systems, 39, 1-9.

[16] Abdel-Basset, M., El-hoseny, M., Gamal, A. and Smarandache, F. (2019) A novel model for evaluation

Hospital medical care systems based on plithogenic sets. Artificial Intelligence In Medicine, 100,

101710.

[17] Lin, C.-T. and Lee, C.S.G. (1996) Neural fuzzy systems : a neuro-fuzzy synergism to intelligent systems,

Prentice-Hall, Inc., Upper Saddle River.


Cite this Article as :
Pedro M. García , Gilberto F. Castro , Inelda A. Martillo , Maikel Y. L. Vázquez, Redesign of a drone (UAV) to obtain high flight autonomy, used in the analysis of Pitahaya crops based on neutrosophic control, International Journal of Neutrosophic Science, Vol. 19 , No. 3 , (2022) : 53-62 (Doi   :  https://doi.org/10.54216/IJNS.190306)