474 365
Full Length Article
International Journal of Neutrosophic Science
Volume 23 , Issue 2, PP: 129-155 , 2024 | Cite this article as | XML | Html |PDF

Title

Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach

  Raad Safah A. AL–Juboory 1 * ,   Hayder Kadhim Zghair 2 ,   May A. Abdul-Khaled AL-Yaseen 3

1  Directorate of Education of Babylon, Ministry of Education, Babylon, Iraq
    (raadalhulali@gmail.com)

2  Department of Software, Information Technology, University of Babylon, Babylon, Iraq
    (hyderkkk@uobabylon.edu.iq)

3  Mathematics Department, University of Babylon, Hilla, Babylon, Iraq
    (pure.may.alaa@uobabylon.edu.iq)


Doi   :   https://doi.org/10.54216/IJNS.230212

Received: June 16, 2023 Revised: September 28, 2023 Accepted: November 27, 2023

Abstract :

We investigate the stability of huge, linked subsystems in separate nonlinear dynamical systems. These systems' properties depend on both their dynamics and their link structure. We examine two concepts of stability. The initial one is connection stability, where a complete system is robust in the meaning of Lyapunov given the uncertainty and temporal fluctuations in the linking lengths among systems. The next is the widely accepted idea of asymptotic stability of the entire system, which is predicated on the premise that all linkages are set at the nominal values. We propose graph-based characteristics of two types of a stable for the situation of homogenous subsystems by making linkages to spectrum graph theory, in particular the spectrum of the sign adjacency matrix. We also obtain constraints on the highest amplitude of the sign adjacency matrix of independent relevance via this method.

Keywords :

Complete system; Adjacency matrix; Stability of dynamical systems; Graph.

References :

[1]    Siljak DD. Large-scale dynamic systems: stability and structure. Vol. 3. North Holland; 1978.

[2]    Alshehri, M. D. (2023). An integrated AHP MCDM based Type-2 Neutrosophic Model for Assessing the Effect of Security in Fog-based IoT Framework. International Journal of Neutrosophic Science (IJNS), 20(2).

[3]    Alshehri, M. D. An integrated AHP MCDM based Type-2 Neutrosophic Model for Assessing the Effect of Security in Fog-based IoT Framework. International Journal of Neutrosophic Science (IJNS), 20(2); 2023.

[4]    Saeed, M., Smarandache, F., Arshad, M., & Rahman, A. U. (2023). An inclusive study on the fundamentals of interval-valued fuzzy hypersoft set. International Journal of Neutrosophic Science, 20(2), 135-161.

[5]    Zghair HK, Manaa ME, Al-Murieb SSA, Abd Al-Razaq FJ. Analysis and description S-box generation for the AES algorithm-a new 3D hyperchaotic system. Bull Electr Eng Informatics ;12(3):1639–47; 2023.

[6]    Saeed, M., Smarandache, F., Arshad, M., & Rahman, A. U. An inclusive study on the fundamentals of interval-valued fuzzy hyper soft set. International Journal of Neutrosophic Science, 20(2), 135-161; 2023.

[7]    Zghair HK, Mehdi SA, Sadkhan SB. Analysis of Novel Seven-Dimension Hyper Chaotic by Using SDIC and Waveform. In: 2020 3rd International Conference on Engineering Technology and its Applications (IICETA). IEEE; p. 95–9; 2020.

[8]    Zghair HK, Mehdi SA, Sadkhan SB. Bifurcation of Novel Seven-Dimension Hyper Chaotic System. In: Journal of Physics: Conference Series. IOP Publishing; p. 12051; 2021.

[9]    Al-Quran, A., Al-Sharqi, F., Rodzi, Z. M., Aladil, M., Romdhini, M. U., Tahat, M. K., & Solaiman, O. S. (2023). The Algebraic Structures of Q-Complex Neutrosophic Soft Sets Associated with Groups and Subgroups. International Journal of Neutrosophic Science, 22(1), 60-77.

[10] Al-Quran, A., Al-Sharqi, F., Rodzi, Z. M., Aladil, M., Romdhini, M. U., Tahat, M. K., & Solaiman, O. S. The Algebraic Structures of Q-Complex Neutrosophic Soft Sets Associated with Groups and Subgroups. International Journal of Neutrosophic Science, 22(1), 60-77;2023.

[11] Palanikumar, M., Iampan, A., Broumi, S., & Balaji, G. Generalization of Neutrosophic interval-valued soft sets with different aggregating operators using multi-criteria group decision-making. International Journal of Neutrosophic Science, 22(1), 114-14;2023.

[12] Palanikumar, M., Iampan, A., Broumi, S., & Balaji, G. (2023). Generalization of neutrosophic interval-valued soft sets with different aggregating operators using multi-criteria group decision-making. International Journal of Neutrosophic Science, 22(1), 114-14.

[13] Yan, Z., Su, F., & Gao, Z. Mean‐square strong stability and stabilization of discrete‐time stochastic systems with multiplicative noises. International Journal of Robust and Nonlinear Control, 32(12), 6767-6784; 2022.

[14] Ramesh R, Raman RS, Bernhard M, Ongkowijaya V, Evdokimov L, Edmundson A, et al. Decentralized control: A case study of russia. In: Network and Distributed Systems Security (NDSS) Symposium 2020. 2020.

[15] Zhe Z, Yaonan W, Jing Z, Ai Z, Cheng F, Liu F. Novel fractional-order decentralized control for nonlinear fractional-order composite systems with time delays. ISA Trans.128:230–42; 2022.

[16] Galarza, F. C., Flores, M. L., Rivero, D. P., & Abobala, M. On Weak Fuzzy Complex Pythagoras Quadruples.

[17] Harizanov S, Lazarov R, Margenov S, Marinov P, Vutov Y. Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Number Linear Algebr with Appl. 25(5): e2167;2018.

[18] Zečević A, Khanbaghi M. A Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems with Uncertain Interconnections. IEEE Access.  10:35888–99; 2022.

[19] Brent West D. Introduction to Graph Theory, vol. 2. Upper Saddle River, NJ: Prentice Hall; 2001.

[20] Heckmann T, Schwanghart W, Phillips JD. Graph theory—Recent developments of its application in geomorphology. Geomorphology. 243:130–46; 2015.

[21] Venkatesh, M., Patra, S., & Ray, G. Improved robust stability and stabilization conditions for discrete-time linear systems with time-varying delay. International Journal of Automation and Control, 16(5), 547-572; 2022.

[22]  Bleecker, D. Basic partial differential equations. Chapman and Hall/CRC;2018.


Cite this Article as :
Style #
MLA Raad Safah A. AL–Juboory , Hayder Kadhim Zghair , May A. Abdul-Khaled AL-Yaseen. "Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach." International Journal of Neutrosophic Science, Vol. 23, No. 2, 2024 ,PP. 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)
APA Raad Safah A. AL–Juboory , Hayder Kadhim Zghair , May A. Abdul-Khaled AL-Yaseen. (2024). Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach. Journal of International Journal of Neutrosophic Science, 23 ( 2 ), 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)
Chicago Raad Safah A. AL–Juboory , Hayder Kadhim Zghair , May A. Abdul-Khaled AL-Yaseen. "Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach." Journal of International Journal of Neutrosophic Science, 23 no. 2 (2024): 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)
Harvard Raad Safah A. AL–Juboory , Hayder Kadhim Zghair , May A. Abdul-Khaled AL-Yaseen. (2024). Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach. Journal of International Journal of Neutrosophic Science, 23 ( 2 ), 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)
Vancouver Raad Safah A. AL–Juboory , Hayder Kadhim Zghair , May A. Abdul-Khaled AL-Yaseen. Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach. Journal of International Journal of Neutrosophic Science, (2024); 23 ( 2 ): 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)
IEEE Raad Safah A. AL–Juboory, Hayder Kadhim Zghair, May A. Abdul-Khaled AL-Yaseen, Dynamics and Stability of Interconnected Systems: A Graph-Theoretic Neuromorphic Approach, Journal of International Journal of Neutrosophic Science, Vol. 23 , No. 2 , (2024) : 129-155 (Doi   :  https://doi.org/10.54216/IJNS.230212)