1119 753
Full Length Article
International Journal of Neutrosophic Science
Volume 2 , Issue 2, PP: 72-76 , 2020 | Cite this article as | XML | Html |PDF


How we can extend the standard deviation notion with neutrosophic interval and quadruple neutrosophic numbers

Authors Names :   V. Christianto   1 *     F. Smarandache   2     M. Aslam   3  

1  Affiliation :  Malang Institute of Agriculture - IPM, INDONESIA

    Email :  victorchristianto@gmail.com

2  Affiliation :  Dept. Math and Sciences, University of New Mexico, Gallup, NM, USA

    Email :  smarand@unm.edu

3  Affiliation :  Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia

    Email :  aslam_ravian@hotmail.com

Doi   :   https://doi.org/10.54216/IJNS.020202

Abstract :

During scientific demonstrating of genuine specialized framework we can meet any sort and rate model vulnerability. Its reasons can be incognizance of modelers or information mistake. In this way, characterization of vulnerabilities, as for their sources, recognizes aleatory and epistemic ones. The aleatory vulnerability is an inalienable information variety related with the researched framework or its condition. Epistemic one is a vulnerability that is because of an absence of information on amounts or procedures of the framework or the earth [7]. Right now, we examine fourfold neutrosophic numbers and their potential application for practical displaying of physical frameworks, particularly in the unwavering quality evaluation of engineering structures. Contribution: we propose to extend the notion of standard deviation to by using symbolic quadruple operator.

Keywords :

Standard deviation , Neutrosophic Interval , Quadruple Neutrosophic Numbers

References :

[1] M. Aslam. “A new attribute sampling plan using neutrosophic statistical interval method,” Complex & Intelligent Systems, 5,pp.365–370, 2019.  https://doi.org/10.1007/s40747-018-0088-6 

[2] M. Aslam, RAR Bantan, N. Khan. “Design of a New Attribute Control Chart Under Neutrosophic Statistics,” Int. J. Fuzzy Syst, 21(2):433–440, 2019.  https://doi.org/10.1007/s40815-018-0577-1

[3] Florentin Smarandache. Symbolic Neutrosophic Theory,” Brussels: EuropaNova asbl., 2015.

[4] AAA. Agboola, B. Davvaz, F. Smarandache. “Neutrosophic quadruple algebraic hyperstructures,” Annals of Fuzzy Mathematics and InformaticsVolume 14, No. 1, pp. 29–42, 2017.

[5] O. Ditlevsen & H.O. Madsen,”Structural Reliability Methods,”TECHNICAL UNIVERSITY OF DENMARK JUNE-SEPTEMBER 2007, p. 36 

[6] László POKORÁDI. “UNCERTAINTIES OF MATHEMATICAL MODELING,”Proceedings of the 12th Symposium of Mathematics and its Applications "Politehnica", University of Timisoara, November, pp.5-7, 2009  

[7] Armen Der Kiureghian & O. Ditlevsen,“Aleatory or epistemic? Does it matter? ,” Special Workshop on Risk Acceptance and Risk Communication - March 26-27, 2007, Stanford University.

[8] Colleen Murphy, Paolo Gardoni, Charles E. Harris Jr., “Classiļ¬cation and Moral Evaluation of Uncertainties in Engineering Modeling,” Sci Eng Ethics, Springer Science+Business Media B.V. 2010, DOI 10.1007/s11948-010-9242-2

Cite this Article as :
V. Christianto , F. Smarandache , M. Aslam, How we can extend the standard deviation notion with neutrosophic interval and quadruple neutrosophic numbers, International Journal of Neutrosophic Science, Vol. 2 , No. 2 , (2020) : 72-76 (Doi   :  https://doi.org/10.54216/IJNS.020202)