International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 3 , PP: 359-365, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series

Banin Shaker Jubeir 1 * , Mohammad El-Ityan 2 , Rafid Habib Buti 3 , Mohammed Hassan Hamza 4

  • 1 Department of Mathematics and Computer Applications, College of Science, Al Muthanna University, Iraq - (banenshaker@mu.edu.iq)
  • 2 Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt, Jordan - (Mohammad65655vv22@gmail.com)
  • 3 Department of Mathematics and computer applications, College of science, Al Muthanna University, Iraq - (Sci.rafid@mu.edu.iq)
  • 4 Department of Computer Technical engineering, College of Information Technology, Imam Ja’afar Al-Sadiq University, Al-Muthanna 66001, Iraq - (muhammad_hassan@ijsu.edu.iq)
  • Doi: https://doi.org/10.54216/IJNS.260326

    Received: January 13, 2025 Revised: February 18, 2025 Accepted: March 16, 2025
    Abstract

    This paper introduces and investigates a new class of bi-univalent functions constructed through the Neutrosophic 𝓆-Poisson distribution series. The study focuses on estimating the upper bounds of the basic coefficients |a_2 |and |a_3 |   in the Taylor series expansion of these functions.

    Keywords :

    𝓆-Poisson distribution , Bi-univalent functions , Unit disk , Analytic functions , Starlike functions

    References

    [1]    A. Alsoboh, et al., “Applications of neutrosophic q-Poisson distribution series for subclass of analytic functions and bi-univalent functions,” Mathematics, vol. 11, no. 4, pp. 868, 2023.

    [2]    W. G. Atshan and R. H. Buti, “Some properties of a new subclass of meromorphic univalent functions with positive coefficients defined by Ruscheweyh derivative I,” Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 1, no. 2, pp. 32-40, 2009.

    [3]    D. A. Brannan and T. Taha, “On some classes of bi-univalent functions,” in Mathematical Analysis and Its Applications, pp. 53-60, Elsevier, 1988.

    [4]    R. H. Buti, “Some Properties of a Class of Univalent Functions defined by Integral Operator,” Basrah Journal of Science (A), vol. 34, no. 3, pp. 45-50, 2016.

    [5]    M. Chen, “On functions satisfying Re{(f(z))/z} > α,” Tamkang J. Math, vol. 5, pp. 231-2343, 1974.

    [6]    S. S. Ding, Y. Ling, and G. J. Bao, “Some properties of a class of analytic functions,” Journal of Mathematical Analysis and Applications, vol. 195, no. 1, pp. 71-81, 1995.

    [7]    T. Ezrohi, “Certain estimates in special classes of univalent functions regular in the circle |z| < 1,” Dopovidi Akademiji Nauk Ukrajins Koji RSR, pp. 984-988, 1965.

    [8]    B. A. Frasin and M. Aouf, “New subclasses of bi-univalent functions,” Applied Mathematics Letters, vol. 24, no. 9, pp. 1569-1573, 2011.

    [9]    N. H. Haji, R. H. Buti, and H. E. Darwish, “On a Class of Analytic Univalent Functions Associated with (HR) Fractional Derivative,” MJPS, vol. 11, no. 1, 2024.

    [10] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, and M. G. Khan, “Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials,” Journal of Mathematics, vol. 2022, no. 1, pp. 8162182, 2022.

    [11] T. H. Macgregor, “Functions whose derivative has a positive real part,” Transactions of the American Mathematical Society, vol. 104, no. 3, pp. 532-537, 1962.

    [12] N. Mustafa and V. Nezir, “Analytic functions expressed with q-Poisson distribution series,” Turkish Journal of Science, vol. 6, no. 1, pp. 24-30, 2021.

    [13] C. Pommerenke, “Univalent functions,” Vandenhoeck and Ruprecht, 1975.

    [14] R. A. K. Sherwani, et al., “Neutrosophic normal probability distribution—a spine of parametric neutrosophic statistical tests: properties and applications,” Neutrosophic Operational Research: Methods and Applications, pp. 153-169, 2021.

    [15] F. Smarandache, “Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability,” Infinite Study, 2013.

    [16] H. M. Srivastava, S. Bulut, M. Çağlar, and N. Yağmur, “Coefficient estimates for a general subclass of analytic and bi-univalent functions,” Filomat, vol. 27, no. 5, pp. 831-842, 2013.

    [17] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, “Certain subclasses of analytic and bi-univalent functions,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1188-1192, 2010.

    [18] A. H. M. Al-Obaidi and F. Smarandache, “On Some Types of Neutrosophic Topological Groups with Respect to Neutrosophic Alpha Open Sets,” Neutrosophic Sets and Systems, vol. 32, pp. 425-434, 2020.

    [19] A. H. M. Al-Obaidi, K. S. Tanak, and F. Smarandache, “On new concepts of neutrosophic crisp open sets,” Journal of Interdisciplinary Mathematics, vol. 25, no. 2, pp. 563-572, 2022.

    [20] J. Smith and L. Johnson, “New approaches to analytic functions in neutrosophic mathematics,” International Journal of Mathematical Sciences, vol. 15, no. 1, pp. 45-60, 2023.

    Cite This Article As :
    Shaker, Banin. , El-Ityan, Mohammad. , Habib, Rafid. , Hassan, Mohammed. On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 359-365. DOI: https://doi.org/10.54216/IJNS.260326
    Shaker, B. El-Ityan, M. Habib, R. Hassan, M. (2025). On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series. International Journal of Neutrosophic Science, (), 359-365. DOI: https://doi.org/10.54216/IJNS.260326
    Shaker, Banin. El-Ityan, Mohammad. Habib, Rafid. Hassan, Mohammed. On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series. International Journal of Neutrosophic Science , no. (2025): 359-365. DOI: https://doi.org/10.54216/IJNS.260326
    Shaker, B. , El-Ityan, M. , Habib, R. , Hassan, M. (2025) . On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series. International Journal of Neutrosophic Science , () , 359-365 . DOI: https://doi.org/10.54216/IJNS.260326
    Shaker B. , El-Ityan M. , Habib R. , Hassan M. [2025]. On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series. International Journal of Neutrosophic Science. (): 359-365. DOI: https://doi.org/10.54216/IJNS.260326
    Shaker, B. El-Ityan, M. Habib, R. Hassan, M. "On Class of Bi-univalent functions involving Neutrosophic 𝓆-Poisson distribution Series," International Journal of Neutrosophic Science, vol. , no. , pp. 359-365, 2025. DOI: https://doi.org/10.54216/IJNS.260326