International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 4 , PP: 77-93, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Supra Soft Continuity Via Supra Soft Omega Open Sets

Dina Abuzaid 1 , Samer Al-Ghour 2 *

  • 1 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia - (dabuzaid@kau.edu.sa)
  • 2 Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan - (algore@just.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.260409

    Received: February 19, 2025 Revised: April 18, 2025 Accepted: June 08, 2025
    Abstract

    This paper presents four new types of continuity in the context of supra-soft topological spaces: supra-soft ω- continuity, supra-soft ω-irresoluteness, supra-soft contra-continuity, and supra-soft contra-ω-continuity. The main contribution is the clear definitions and detailed study of these concepts, which helps us better understand how they work and how they are interconnected. We carefully examine how these new concepts connect among themselves and with analogous concepts in traditional supra-topological spaces. We also demonstrate how these different forms of continuity behave under common mathematical operations, such as composition and restriction. To make everything easier to understand, we introduce several examples that emphasize how these new concepts compare with existing, well-known concepts, giving a better picture of how continuity works in a more generalized topological settings.

    Keywords :

    Supra &omega , -open sets , Supra-soft continuity , Supra-soft irresoluteness , Supra generated soft topology

    References

    [1] Molodtsov, D. Soft set theory—first results. Comput. Math. Appl. 1999, 37, 19–31.

    [2] Dalkılıc, O.; Demirtas, N. Algorithms for covid-19 outbreak using soft set theory: estimation and appli- cation. Soft Comput. 2023, 27, 3203–3211.

    [3] Santos-Garcıa, G.; Alcantud, J.C.R. Ranked soft sets. Expert Syst. 2023, 40, 1–24.

    [4] Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799.

    [5] Mashhour, A.S.; Allam, A.A.; Mahmoud, F.S.; Khedr, F.H. On supra topological spaces. Indian J. Pure Appl. Math. 1983, 14, 502–510.

    [6] El-Shafei, M.E.; Zakari, A.H.; Al-shami, T.M. Some applications of supra preopen sets. J. Math. 2020, 9634206.

    [7] Jayanthi, D.; Rajesh, R. Soft sets in decision-making: An overview. Soft Comput. 2022, 25, 1234512358.

    [8] Kumar, A.; Gupta, V. Recent advancements in soft set theory and its applications in decision-making. Int. J. Comput. Math. 2022, , 99 , 789–803.

    [9] Ghaloob, E.A.; Sadek, A.R. On β*-supra topological spaces. J. Discret. Math. Sci. Cryptogr. 2023, 26, 1835–1841.

    [10] Singh, R.; Yadav, S. A new approach to soft topological spaces. Asian J. Math. Stat. 2023, 12, 34–45.

    [11] Kozae, A.M.; Shokry, M.; Zidan, M. Supra topologies for digital plane. AASCIT Commun. 2016, 3, 110–.

    [12] El-Sheikh, S.A.; Abd El-Latif, A.M. Decompositions of some types of supra soft sets and soft continuity. Int. J. Math. Trends Technol. 2014, 9, 37–56.

    [13] El-Shafei, M.E.; Abo-Elhamayel, M.; Al-shami, T.M. Further notions related to new operators and com- pactness via supra soft topological spaces. Int. J. Adv. Math. 2019, 1, 44–60.

    [14] Aras, C.G.; Bayramov, S. Separation axioms in supra soft topological spaces. Filomat 2018, 32, 34793486.

    [15] Aras, C.G.; Bayramov, S. Results of some separation axioms in supra soft topological spaces. TWMS J. Appl. Eng. Math. 2019, 9, 58–63.

    [16] Chen, Y.; Zhao, H. Hybrid soft set models for multi-criteria decision-making problems. J. Math. Anal.Appl. 2024, 517, 120–135.

    [17] Gupta, P.; Sharma, A. Applications of soft sets in optimization problems. J. Optim. Theory Appl 2023, 188, 123–140.

    [18] Al Ghour, S.; Hamed, W. On two classes of soft sets in soft topological spaces. Symmetry 2020, 12, 265.

    19] Abuzaid, D.; Al-Ghour, S. Supra soft omega-open sets and supra soft omega-regularity. AIMS Math. 2025, 10, 6636–6651.

     [20] Csaszar, A. Generalized topology, generalized continuity. Acta Math. Hung. 2002, 96, 351–357.

    [21] Al Ghour, S.; Zareer, W. Omega open sets in generalized topological spaces. J. Nonlinear Sci. Appl. 2016, 9, 3010–3017.

    [22] Al Ghour, S.; Zareer, W. Some mappings and separation axioms via omega open sets in generalized topological spaces. Nonlinear Stud. 2019, 26, 609–616.

    [23] Jayanthi, D. Contra continuity on generalized topological spaces. Acta Math. Hung. 2012, 137, 263–271.

    [24] Al-shami, T.M. Some results related to supra topological spaces. J. Adv. Stud. Topol. 2016, 7, 283–294.

    Cite This Article As :
    Abuzaid, Dina. , Al-Ghour, Samer. Supra Soft Continuity Via Supra Soft Omega Open Sets. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 77-93. DOI: https://doi.org/10.54216/IJNS.260409
    Abuzaid, D. Al-Ghour, S. (2025). Supra Soft Continuity Via Supra Soft Omega Open Sets. International Journal of Neutrosophic Science, (), 77-93. DOI: https://doi.org/10.54216/IJNS.260409
    Abuzaid, Dina. Al-Ghour, Samer. Supra Soft Continuity Via Supra Soft Omega Open Sets. International Journal of Neutrosophic Science , no. (2025): 77-93. DOI: https://doi.org/10.54216/IJNS.260409
    Abuzaid, D. , Al-Ghour, S. (2025) . Supra Soft Continuity Via Supra Soft Omega Open Sets. International Journal of Neutrosophic Science , () , 77-93 . DOI: https://doi.org/10.54216/IJNS.260409
    Abuzaid D. , Al-Ghour S. [2025]. Supra Soft Continuity Via Supra Soft Omega Open Sets. International Journal of Neutrosophic Science. (): 77-93. DOI: https://doi.org/10.54216/IJNS.260409
    Abuzaid, D. Al-Ghour, S. "Supra Soft Continuity Via Supra Soft Omega Open Sets," International Journal of Neutrosophic Science, vol. , no. , pp. 77-93, 2025. DOI: https://doi.org/10.54216/IJNS.260409