International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 4 , PP: 137-142, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Estimation of the stress–strength Reliability for Benktander Distribution

Naser Odat 1 *

  • 1 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (nodat@jadara.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.260413

    Received: February 19, 2025 Revised: April 22, 2025 Accepted: June 09, 2025
    Abstract

    This work focuses on the estimation reliability function    where x and y are two independent Benktander distributions. The greatest likelihood's asymptotic distribution is found. The maximum likelihood estimator, the moment method estimator, and the approximate maximum likelihood estimator of are proposed. We obtain the asymptotic distribution of s maximum likelihood estimate. The  confidence interval can be found using the asymptotic distribution.

    Keywords :

    Benktander , Maximum likelihood , Asymptotic distribution , Fisher information matrix

    References

    [1]       K. Constantine and M. Karson, "The Estimation of P(Y<X) in Gamma Case," Commun. Stat. Simul. Compute, vol. 15, pp. 365-388, 1986.

    [2]       K. Constantine, M. Karson, and S. K. Tse, "Confidence Interval Estimation of P(Y<X) in the Gamma Case," Commun. Stat. Simul. Compute, vol. 19, no. 1, pp. 225-244, 1990.

    [3]       F. Downtown, "The Estimation of P(Y<X) in the Normal Case," Technometrics, vol. 15, pp. 551-558, 1973.

    [4]       Tong, "On the estimation for the exponential families," IEEE Trans. Reliab., vol. 26, pp. 54-56, 1977.

    [5]       R. Ismail, S. S. Jeyaratnam, and S. Panchapakesan, "Estimation of Pr[X>Y] for Gamma Distributions," J. Stat. Comput. Simul, vol. 26, no. 3-4, pp. 253-267, 1986.

    [6]       S. Nadarajah, "Reliability for Logistic Distributions," Elektron. Model, vol. 26, no. 3, pp. 65-82, 2004.

    [7]       R. Hatamleh and V. A. Zolotarev, "On Model Representations of Non-Selfadjoint Operators with Infinitely Dimensional Imaginary Component," J. Math. Phys. Anal. Geom., vol. 11, no. 2, pp. 174–186, 2015, doi: 10.15407/mag11.02.174.

    [8]       J. I. McCool, "Inference on P(Y < X) in the Weibull Case," Commun. Stat. Simul. Compute, vol. 20, pp. 129-148, 1991.

    [9]       A. M. Awad, M. M. Azzam, and M. A. Hamadan, "Some inference results in P(Y < X) in the bivariate exponential model," Commun. Stat. Theory Methods, vol. 10, pp. 2515-2524, 1981.

    [10]    J. D. Church and B. Harris, "The estimation of reliability from stress-strength relationships," Technometrics, vol. 12, pp. 49-54, 1970.

    [11]    F. Downtown, "The estimation of P(X > Y) in the normal case," Technometrics, vol. 15, pp. 551-558, 1973.

    [12]    Z. Govidarajulu, "Two-sided confidence limits for P(X > Y) based on normal samples of X and Y," Sankhya B, vol. 29, pp. 35-40, 1967.

    [13]    A. Hazaymeh, "Time-Shadow Soft Set: Concepts and Applications," Int. J. Fuzzy Logic Intell. Syst., vol. 24, no. 4, pp. 387-398, 2024.

    [14]    A. Hazaymeh and A. Bataihah, "Results on Fixed Points in Neutrosophic Metric Spaces Through the Use of Simulation Functions," J. Math. Anal., vol. 15, no. 6, pp. 47–57, 2024.

    [15]    J. K. Lee, "A Study on the Impact of AI on Business Processes," IEEE Access, vol. 9, pp. 12345-12356, 2021.

    [16]    M. R. Alshahrani, "Machine Learning Techniques for Predicting Customer Behavior," Future Gener. Comput. Syst., vol. 115, pp. 567-578, 2021.

    [17]    P. Patel, "Data Analytics for Enhanced Decision Making in Supply Chains," Comput. Ind. Eng., vol. 160, pp. 107-115, 2021.

    Cite This Article As :
    Odat, Naser. Estimation of the stress–strength Reliability for Benktander Distribution. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 137-142. DOI: https://doi.org/10.54216/IJNS.260413
    Odat, N. (2025). Estimation of the stress–strength Reliability for Benktander Distribution. International Journal of Neutrosophic Science, (), 137-142. DOI: https://doi.org/10.54216/IJNS.260413
    Odat, Naser. Estimation of the stress–strength Reliability for Benktander Distribution. International Journal of Neutrosophic Science , no. (2025): 137-142. DOI: https://doi.org/10.54216/IJNS.260413
    Odat, N. (2025) . Estimation of the stress–strength Reliability for Benktander Distribution. International Journal of Neutrosophic Science , () , 137-142 . DOI: https://doi.org/10.54216/IJNS.260413
    Odat N. [2025]. Estimation of the stress–strength Reliability for Benktander Distribution. International Journal of Neutrosophic Science. (): 137-142. DOI: https://doi.org/10.54216/IJNS.260413
    Odat, N. "Estimation of the stress–strength Reliability for Benktander Distribution," International Journal of Neutrosophic Science, vol. , no. , pp. 137-142, 2025. DOI: https://doi.org/10.54216/IJNS.260413