International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 110-122, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions

Isra Al-Shbeil 1 * , Wael Mahmoud Mohammad Salameh 2 , Saleem Ashhab 3 , Biswajit Rath 4 , Eada Ahmed Al-Zahrani 5

  • 1 Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan - (i.shbeil@ju.edu.jo)
  • 2 Faculty of Information Technology, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates - (wael.salameh@adu.ac.ae)
  • 3 Department of Mathematics, Al-Albayt University, Mafraq 25113, Jordan - (ahhab@aabu.edu.jo)
  • 4 Gitam Institute of Science, GITAM University, Visakhapatnam 530045, India - (brath@gitam.edu)
  • 5 Basic and Applied Scientifc Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam,Saudi Arabia - (ealzahrani@iau.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.270210

    Received: April 11, 2025 Revised: June 14, 2025 Accepted: August 14, 2025
    Abstract

    This study investigates the second-order Hankel determinant in the context of certain analytic functions to find upper bounds, incorporating neutrosophic logic to handle uncertainty in coefficient estimation. The normalized conditions ג)0)=0 ג′(0) = 1 are analyzed through both classical and neutrosophic frameworks. We derive:

    • Sharp neutrosophic bounds for |H2,2,ϖ| when ϖ (1, 3/2]

    • Optimal bounds for |H2,3| at ϖ = 3/2 in G(ϖ) and Q(ϖ)

    • Neutrosophic logarithmic coefficient determinants with τ -ι-φ membership degrees

    The framework demonstrates robustness when coefficients exhibit simultaneous membership/non-membership characteristics.

    Keywords :

    Neutrosophic analysis , Caratheodory function , Upper bound , Hankel determinant , Holomorphic function , Uncertainty quantification

    References

    [1] I. Al-Shbeil, M. I. Faisal, M. Arif, M. Abbas, and R. K. Alhefthi. Investigation of the H. Mathematics, 11(17):3664, 2023.

     

    [2] I. Al-shbeil, A. Saliu, and A. Cˇatas¸. Some geometrical results associated with secant hyperbolic functions. Mathematics, 10(15):2697, 2022.

     

    [3] I. Al-shbeil, T. G. Shaba, and A. Cˇatas¸. Second H. Fractals and Fractional, 6(4):186, 2022.

     

    [4] M. F. Ali and A. Vasudevarao. On logarithmic coefficients of some close-to-convex functions. Proceedings of the American Mathematical Society, 146(3):1131–1142, 2018.

     

    [5] K. O. Babalola. On H3(1) H. Nova Science Publishers, New York, 2010.

     

    [6] S. Banga and S. Sivaprasad Kumar. The sharp bounds of the second and third H. Mathematica Slovaca, 70(4):849–862, 2020.

     

    [7] C. Carath´eodory. On the theory of measure and integration. Rendiconti del Circolo Matematico di Palermo, 32(4):193–217, 1911.

     

    [8] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and Y. J. Sim. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas, 114:52, 2020.

     

    [9] P. T. Duren. Univalent Functions. Springer, New York, 1983.

     

    [10] T. Hayami and S. Owa. Generalized H. International Journal of Mathematical Analysis, 4(52):2573– 2585, 2020.

     

    [11] A. Janteng, S. A. Halim, and M. Darus. Coefficient inequality for a function whose derivative has a positive real part. Journal of Inequalities in Pure & Applied Mathematics, 7(2):5, 2006.

     

    [12] A. Janteng, S. A. Halim, and M. Darus. Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis, 1(13):619–625, 2007.

     

    [13] K. S. Kumar, B. Rath, and D. V. Krishna. The sharp bound of the third H. Contemporary Mathematics, 4(1):30–41, 2023.

     

    [14] R. J. Libera and E. J. Zlotkiewicz. Coefficient bounds for the inverse of a function with derivative in II. Proceedings of the American Mathematical Society, 87(2):251–257, 1983.

     

    [15] A. E. Livingston. The coefficients of multivalent close-to-convex functions. Proceedings of the American Mathematical Society, 21(3):545–552, 1969.

     

    [16] I. M. Milin. Univalent Functions and Orthonormal Systems. Izdat. “Nauka”, Moscow, 1971.

     

    [17] C. Pommerenke. On the coefficients and H. Journal of the London Mathematical Society, 41(1):111–122, 1966.

     

    [18] C. Pommerenke. Univalent Functions. Vandenhoeck and Ruprecht, G¨ottingen, 1975.

     

    [19] B. Rath, K. S. Kumar, and D. V. Krishna. An exact estimate of the third hankel determinants for functions inverse to convex functions. Matematychni Studii, 60(1):34–39, 2023.

     

    [20] B. Rath, K. S. Kumar, D. V. Krishna, and A. Lecko. The sharp bound of the third hankel determinant for starlike functions of order 1/2. Complex Analysis and Operator Theory, 16:65, 2022.

     

    [21] B. Rath, K. S. Kumar, D. V. Krishna, and G. K. S. Viswanadh. The sharp bound of the third hankel determinants for inverse of starlike functions with respect to symmetric points. Matematychni Studii,

     

    58(1):45–50, 2022.

     

    [22] B. Rath, K. S. Kumar, D. V. Krishna, and G. K. S. Viswanadh. The sharp bound for the third H. Asian- European Journal of Mathematics, 16(7):2350126, 2023.

     

    [23] A. Saliu, I. Al-Shbeil, J. Gong, S. N. Malik, and N. Aloraini. Properties of q-symmetric starlike functions of J. Symmetry, 14(9):1907, 2022.

     

    [24] A. Saliu, K. Jabeen, I. Al-shbeil, S. O. Oladejo, and A. Cˇatas¸. Radius and differential subordination results for starlikeness associated with limac¸on. Journal of Function Spaces, 2022:15, 2022. 8264693.

     

    [25] H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, and N. Khan. Upper bound of the third H. Bulletin des Sciences Math´ematiques, 167:102942, 2021.

     

    [26] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi. Univalent functions with positive coefficients. Tamkang Journal of Mathematics, 25(3):225–230, 2021.

     

    [27] P. Zaprawa. On H. Results in Mathematics, 73:89, 2018.

    Cite This Article As :
    Al-Shbeil, Isra. , Mahmoud, Wael. , Ashhab, Saleem. , Rath, Biswajit. , Ahmed, Eada. Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 110-122. DOI: https://doi.org/10.54216/IJNS.270210
    Al-Shbeil, I. Mahmoud, W. Ashhab, S. Rath, B. Ahmed, E. (2026). Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions. International Journal of Neutrosophic Science, (), 110-122. DOI: https://doi.org/10.54216/IJNS.270210
    Al-Shbeil, Isra. Mahmoud, Wael. Ashhab, Saleem. Rath, Biswajit. Ahmed, Eada. Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions. International Journal of Neutrosophic Science , no. (2026): 110-122. DOI: https://doi.org/10.54216/IJNS.270210
    Al-Shbeil, I. , Mahmoud, W. , Ashhab, S. , Rath, B. , Ahmed, E. (2026) . Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions. International Journal of Neutrosophic Science , () , 110-122 . DOI: https://doi.org/10.54216/IJNS.270210
    Al-Shbeil I. , Mahmoud W. , Ashhab S. , Rath B. , Ahmed E. [2026]. Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions. International Journal of Neutrosophic Science. (): 110-122. DOI: https://doi.org/10.54216/IJNS.270210
    Al-Shbeil, I. Mahmoud, W. Ashhab, S. Rath, B. Ahmed, E. "Neutrosophic Bounds on Coefficients of Inequality for a Subclass of Holomorphic Functions," International Journal of Neutrosophic Science, vol. , no. , pp. 110-122, 2026. DOI: https://doi.org/10.54216/IJNS.270210